AGRIS

Data provider:

Icon data provider

The National Agricultural Library is one of four national libraries of the United States, with locations in Beltsville, Maryland and Washington, D.C. It houses one of the world's largest and most accessible agricultural information collections and serves as the nexus for a national network of state land-grant and U.S. Department of Agriculture field libraries. In fiscal year 2011 (Oct 2010 through Sept 2011) NAL delivered more than 100 million direct customer service transactions.

Активный (Поставщик данных предоставлял метаданные в течение последнего календарного года)
Journal Article

Статья в журнале

Organellar maturases: A window into the evolution of the spliceosome  [2015]

Schmitz-Linneweber, Christian; Lampe, Marie-Kristin; Sultan, Laure D.; Ostersetzer-Biran, Oren;

Доступ к полному тексту

During the evolution of eukaryotic genomes, many genes have been interrupted by intervening sequences (introns) that must be removed post-transcriptionally from RNA precursors to form mRNAs ready for translation. The origin of nuclear introns is still under debate, but one hypothesis is that the spliceosome and the intron–exon structure of genes have evolved from bacterial-type group II introns that invaded the eukaryotic genomes. The group II introns were most likely introduced into the eukaryotic genome from an α-proteobacterial predecessor of mitochondria early during the endosymbiosis event. These self-splicing and mobile introns spread through the eukaryotic genome and later degenerated. Pieces of introns became part of the general splicing machinery we know today as the spliceosome. In addition, group II introns likely brought intron maturases with them to the nucleus. Maturases are found in most bacterial introns, where they act as highly specific splicing factors for group II introns. In the spliceosome, the core protein Prp8 shows homology to group II intron-encoded maturases. While maturases are entirely intron specific, their descendant of the spliceosomal machinery, the Prp8 protein, is an extremely versatile splicing factor with multiple interacting proteins and RNAs. How could such a general player in spliceosomal splicing evolve from the monospecific bacterial maturases? Analysis of the organellar splicing machinery in plants may give clues
on the evolution of nuclear splicing.Plants encode various proteins which are closely related to bacterial maturases. The organellar genomes contain one maturase each, named MatK in chloroplasts and MatR in mitochondria. In addition, several maturase genes have been found in the nucleus as well, which are acting on mitochondrial pre-RNAs. All plant maturases show sequence deviation from their progenitor bacterial maturases, and interestingly are all acting on multiple organellar group II intron targets. Moreover, they seem to function in the splicing of group II introns together with a number of additional nuclear-encoded splicing factors, possibly acting as an organellar proto-spliceosome. Together, this makes them interesting models for the early evolution of nuclear spliceosomal splicing. In this review, we summarize recent advances in our understanding of the role of plant maturases and their accessory factors in plants. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Журнал
Biochimica et biophysica acta
ISSN : 0005-2728

Библиографическая информация

Язык:
English
Тип:
Journal Article
В АГРИСе с:
2019
Том:
1847
Выпуск:
9
Экстент/Размер:
798-808
Издатель:
Elsevier B.V.
Все названия:
"Organellar maturases: A window into the evolution of the spliceosome"@eng
Loading...

Библиографическая информация

Язык:
English
Тип:
Journal Article
В АГРИСе с:
2019
Том:
1847
Выпуск:
9
Экстент/Размер:
798-808
Издатель:
Elsevier B.V.
Все названия:
"Organellar maturases: A window into the evolution of the spliceosome"@eng