Data provider:

Icon data provider

The National Agricultural Library is one of four national libraries of the United States, with locations in Beltsville, Maryland and Washington, D.C. It houses one of the world's largest and most accessible agricultural information collections and serves as the nexus for a national network of state land-grant and U.S. Department of Agriculture field libraries. In fiscal year 2011 (Oct 2010 through Sept 2011) NAL delivered more than 100 million direct customer service transactions.

Journal Article

Journal article

Polyethylene and biodegradable mulches for agricultural applications: a review  [2012]

Kasirajan, Subrahmaniyan; Ngouajio, Mathieu;

Access the full text

The use of plastic mulch in agriculture has increased dramatically in the last 10 years throughout the world. This increase is due to benefits such as increase in soil temperature, reduced weed pressure, moisture conservation, reduction of certain insect pests, higher crop yields, and more efficient use of soil nutrients. However, disposing of used plastic films, which cause pollution, has led to development of photodegradable and biodegradable mulches. Here we review the use of plastic mulches in agriculture, with special reference to biodegradable mulches. Major topics discussed are (1) history of plastic mulch and impact on crop yield and pest management, (2) limitations of polyethylene mulches and potential alternatives, (3) biodegradable and photodegradable plastic mulches, (4) field performance of biodegradable mulches, and (5) use of biodegradable plastic mulches in organic production. We found that (1) despite multiple benefits, removal and disposal of conventional polyethylene mulches remains a major agronomic, economic, and environmental constraint; (2) early use of photodegradable plastic mulch during the 1970s and 1980s, wrongly named biodegradable mulch films, discouraged adoption of new biodegradable mulch films because they were too expensive and their breakdown was unpredictable; (3) biodegradable plastic films are converted through microbial activity in the soil to carbon dioxide, water, and natural substances; (4) polymers such as poly(la
ctic acid), poly(butylene adipate-coterephthalate), poly(ε-caprolactone), and starch-based polymer blends or copolymers can degrade when exposed to bioactive environments such as soil and compost; (5) with truly biodegradable materials obtained from petroleum and natural resources, opportunity for using biodegradable polymers as agricultural mulch films has become more viable; and (6) the source of polymer and additives may limit use of some biodegradable mulches in organic production. More knowledge is needed on the effect of biodegradable mulches on crop growth, microclimate modifications, soil biota, soil fertility, and yields.

From the journal

Agronomy for sustainable development

ISSN : 1774-0746