AGRIS

Data provider:

Icon data provider

The National Agricultural Library is one of four national libraries of the United States, with locations in Beltsville, Maryland and Washington, D.C. It houses one of the world's largest and most accessible agricultural information collections and serves as the nexus for a national network of state land-grant and U.S. Department of Agriculture field libraries. In fiscal year 2011 (Oct 2010 through Sept 2011) NAL delivered more than 100 million direct customer service transactions.

Active (Data provider submitted metadata in the last calendar year)
Journal Article

Journal Article

Myricetin attenuates lipopolysaccharide‐stimulated activation of mouse bone marrow‐derived dendritic cells through suppression of IKK/NF‐κB and MAPK signalling pathways  [2013]

Ru‐Huei; Fu; Shih‐Ping; Liu; et al.

Access the full text

BACKGROUND: Myricetin is a naturally occurring flavonoid that is found in many fruits, vegetables, teas and medicinal herbs. It has been demonstrated to have anti‐inflammatory properties, but, to date, no studies have described the immunomodulatory effects of myricetin on the functions of dendritic cells (DCs). The aim of this study was to evaluate the potential for myricetin to modulate lipopolysaccharide (LPS)‐stimulated activation of mouse bone marrow‐derived DCs. RESULTS: Our experimental data showed that treatment with myricetin up to 10 µg mL⁻¹ does not cause cytotoxicity in cells. Myricetin significantly decreased the secretion of tumour necrosis factor‐α, interleukin‐6 and interleukin‐12p70 by LPS‐stimulated DCs. The expression of LPS‐induced major histocompatibility class II, CD40 and CD86 on DCs was also inhibited by myricetin, and the endocytic and migratory capacity of LPS‐stimulated DCs was blocked by myricentin. In addition, LPS‐stimulated DC‐elicited allogeneic T‐cell proliferation was reduced by myricetin. Moreover, our results confirmed that myricetin attenuates the responses of LPS‐stimulated activation of DCs via suppression of IκB kinase/nuclear factor‐κB and mitogen‐activated protein kinase‐dependent pathways. CONCLUSION: Myricetin has novel immunopharmacological activity, and modulation of DCs by myricetin may be an attractive strategy for the treatment of inflammatory and autoimmune disorders, a
nd for transplantation. Copyright © 2012 Society of Chemical Industry
From the journal
Journal of the science of food and agriculture
ISSN : 0022-5142

Bibliographic information

Language:
English
Type:
Journal Article
In AGRIS since:
2017
Volume:
93 (1
Extent:
76-84
Publisher:
John Wiley & Sons, Ltd
All titles:
"Myricetin attenuates lipopolysaccharide‐stimulated activation of mouse bone marrow‐derived dendritic cells through suppression of IKK/NF‐κB and MAPK signalling pathways"@eng
Other:
"JOURNAL ARTICLE"
Loading...

Bibliographic information

Language:
English
Type:
Journal Article
In AGRIS since:
2017
Volume:
93 (1
Extent:
76-84
Publisher:
John Wiley & Sons, Ltd
All titles:
"Myricetin attenuates lipopolysaccharide‐stimulated activation of mouse bone marrow‐derived dendritic cells through suppression of IKK/NF‐κB and MAPK signalling pathways"@eng
Other:
"JOURNAL ARTICLE"