AGRIS

Data provider:

Icon data provider

The National Agricultural Library is one of four national libraries of the United States, with locations in Beltsville, Maryland and Washington, D.C. It houses one of the world's largest and most accessible agricultural information collections and serves as the nexus for a national network of state land-grant and U.S. Department of Agriculture field libraries. In fiscal year 2011 (Oct 2010 through Sept 2011) NAL delivered more than 100 million direct customer service transactions.

Active (Data provider submitted metadata in the last calendar year)
Journal Article

Journal Article

Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid  [2017]

Cyrielle; Garcia; Cécile; Duby; et al. American Dairy Science Association [Corporate Author]

Access the full text

The octadecadienoic conjugated linoleic acid (CLA) isomer with trans-11 and cis-13 double bonds (trans-11,cis-13 CLA) has been described in ruminant milk. For now, this specific CLA is suspected to derive exclusively from ruminal biohydrogenation of dietary α-linolenic acid. However, in rodents, the fatty acid desaturase 3 (FADS3) gene was recently shown to code for an enzyme able to catalyze the unexpected Δ13-desaturation of vaccenic acid, producing a Δ11,13-CLA with all the structural characteristics of the trans-11,cis-13 isomer, although no commercial standard exists for complete conclusive identification. Because the FADS3 gene has already been reported in bovine animals, we hypothesized in the present study that an alternative direct FADS3-catalyzed Δ13-desaturation of vaccenic acid in mammary tissue may therefore co-exist with α-linolenic acid biohydrogenation to explain the final ruminant milk trans-11,cis-13 CLA presence. Here, we first confirm that the FADS3 gene is present in ruminant mammal genomic sequence databases. Second, we demonstrate that the Δ11,13-CLA found in milk fat and the highly probable trans-11,cis-13 CLA isomer produced by rodent FADS3 possess exactly the same structural characteristics. Then, we show that bovine mammary MAC-T and BME-UV epithelial cells express both FADS3 and stearoyl-CoA desaturase 1 (SCD1) mRNA and are able to synthesize both the suspected trans-11,cis-13 CLA and cis-9,trans-11CLA (rumenic acid) isome
rs when incubated with vaccenic acid. Finally, the concomitant presence of the suspected trans-11,cis-13 CLA isomer with FADS3 mRNA was shown in goat mammary tissue, whereas both were conversely very low or even absent in goat liver. Therefore, this study provides several lines of evidence that, by analogy with rumenic acid, trans-11,cis-13 CLA may originate both from ruminal biohydrogenation and from direct FADS3-catalyzed Δ13-desaturation of vaccenic acid in mammary tissue.
From the journal
Journal of dairy science
ISSN : 0022-0302

Bibliographic information

Language:
English
Type:
Journal Article
In AGRIS since:
2017
Volume:
100 (16
Extent:
783-796
Publisher:
Elsevier Inc.
All titles:
"Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid"@eng
Loading...

Bibliographic information

Language:
English
Type:
Journal Article
In AGRIS since:
2017
Volume:
100 (16
Extent:
783-796
Publisher:
Elsevier Inc.
All titles:
"Synthesis of the suspected trans-11,cis-13 conjugated linoleic acid isomer in ruminant mammary tissue by FADS3-catalyzed Δ13-desaturation of vaccenic acid"@eng