Written Paper

Fabric‐based alkaline direct formate microfluidic fuel cells  [2017]

Kryls Domalaon Catherine Tang et al.

Access the full text

Fabric‐based microfluidic fuel cells (MFCs) serve as a novel, cost‐efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y‐shaped paper‐based MFCs, fabric‐based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric‐based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two‐strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm²) and power (4.40 mW/cm²) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y‐shaped paper‐based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light‐emitting diodes.

From the journal


ISSN : 0173-0835