Log-concave character of microbial growth function without lag phase
2003
Cedilnik, A. (Ljubljana Univ. (Slovenia). Biotechnical Fac., Forestry and Renewable Forest Resources Dept.) | Gorup, E.C. (Klinicni center, Ljubljana (Slovenia))
Minot's law, that the relative growth rate is decreasing everywhere on the domain of increasing microbial growth function, we extend also to the domain where the observed culture decays. We show that the growth function which fulfils this law is logarithmically concave and is always of the form ? where R(t) is a decreasing function. The end of lag phase is defined as the beginning of log-concavity of growth function. We describe other general mathematical characteristics of such growth functions and derive the basic principle of approximation of concrete data. At the end we suggest a simple model as an example.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل University of Ljubljana