Responsive delivery of drug cocktail via mesoporous silica nanolamps
2014
Muhammad, Faheem | Guo, Mingyi | Wang, Aifei | Zhao, Jianyun | Qi, Wenxiu | Guo, Yingjie | Zhu, Guangshan
After a substantial advancement in single drug nanocarrier, nanomedicine now demands an integration of nanotechnology with combination therapy to achieve synergistic therapeutic effects. In this respect, a smart and multiple drug shuttling nanotheranostic system is developed which transport diverse kinds of anticancer drugs to cancer cells in a controlled and responsive manner respectively. Synthetically, a significantly high dose of hydrophobic camptothecin (CPT) is first loaded into the porous structure of quantum dots (CdS) coupled mesoporous silica nanocomposite. Subsequently, fluorescent doxorubicin (DOX) molecules are exclusively anchored onto the surface of CdS; as a result, the fluorescence of both CdS and DOX is quenched. Upon exposing to mildly acidic conditions, the fluorescence of both species is recovered, such fluorescent “on–off” states provides an added opportunity to real time sense drug release. In-vitro cell experiment reveals an excellent anticancer efficacy of drug cocktail, merely 3μg/ml concentration of multiple drugs loaded nanocarrier reduces the cell viability to 30%. Furthermore, confocal imaging indicates a successful release of both therapeutic entities. We visualize that our newly fabricated multifunctional double drug-carrying nanoparticles can be a valuable addition to next generation of materials that simultaneously deliver cocktail of drugs with imaging functionality.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library