Evaluation of Dissolved Organic Matter Removals through WWT and SAT Using Pilot-Scale and Lab-Scale Reactors
2019
Takabe, Yugo | Kameda, Ippei | Suzuki, Ryosuke | Nishimura, Fumitake | Kusuda, Yasunari | Phattarapattamawong, Songkeart | Itoh, Sadahiko
Indirect potable reuse systems, which consist of wastewater treatment (WWT) and soil aquifer treatment (SAT), offer advantages such as their low cost and the underground storage of reuse water. In this study, the dissolved organic matter (DOM) profile of a sequential treatment system (i.e. WWT followed by SAT) was investigated using a pilot-scale SAT reactor. In addition, the biological DOM removal characteristics in the vadose zone of the SAT, which were found to play an important role in DOM removal for the entire SAT, were investigated using lab-scale reactors (LSRs). Composition of the removed DOM by WWT and SAT showed that the majority fraction of the removed DOM was different for the WWT (hydrophobic neutral 27.9%) and SAT (hydrophobic acids (HoA) 29.1%), suggesting that SAT exhibits unique DOM removal characteristics that contribute to water reclamation. Biological DOM removal was confirmed using the LSRs, and changes in the DOM removal characteristics 10–20 cm from the top of the vadose zone in the LSRs were revealed on the basis of the DOM fractionation and a BIOLOG assay, suggesting that microbial activity in the lower layer of the vadose zone contributed to the unique removal of the HoA fraction in the SAT.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library