Removal of Zn2+ and SO4 2− from aqueous solutions on acidic and chelating dehydrated carbon
2017
El-Shafey, El-Said I. | Al-Lawati, Haider A. J. | Al-Busafi, Saleh | Al-Shiraiqi, Badriya
The agricultural waste, date palm leaflets, was carbonized chemically using sulfuric acid treatment. Produced dehydrated carbon (DC) was subjected to surface functionalization using ethylene diamine producing chelating dehydrated carbon (CDC). In the process, ∼80 % of the carboxylic content on DC was converted to amide successfully. DC acts as a cation exchanger because of the high content of carboxylic groups on its surface showing acidic nature. However, CDC possesses amine and amide groups showing basic nature. Both amine and amide groups are capable of chelating Zn²⁺ at high pH; however, at low pH, the amine group becomes protonated acting as anion exchanger. Sorption of Zn²⁺ and SO₄ ²⁻ was investigated in terms of contact time, initial pH, concentration, and carbon reuse. Zn²⁺ shows maximum sorption at initial pH 5; however, maximum sorption of SO₄ ²⁻ takes place at initial pH 2. Kinetic and equilibrium studies were carried out at initial 5 and 2 for Zn²⁺and SO₄ ²⁻, respectively. Sorption kinetics data follow well the pseudo second-order model. The equilibrium sorption data follow the Langmuir isotherm more than the Freundlich isotherm. CDC shows better sorption performance for Zn²⁺ and SO₄ ²⁻ than DC. DC and CDC show combined equimolar removal of both Zn²⁺ and SO₄ ²⁻ at initial pH 2.3 and 2.6, respectively, with efficient recycle properties. Combined removal of Zn²⁺ and SO₄ ²⁻ from spiked municipal wastewater shows less uptake on both carbons than from deionized water.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library