Assessing the stability in dry mycelial fertilizer of Penicillium chrysogenum as soil amendment via fluorescence excitation-emission matrix spectra: organic matter’s transformation and maturity
2017
Wang, Bing | Cai, Chen | Li, Guomin | Liu, Huiling
Utilization as dry mycelial fertilizer (DMF) produced from penicillin fermentation fungi mycelium (PFFM) with an acid-heating pretreatment is a potential way. To study the transformation and stability of water-extractable organic matter in DMF-amended soil via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a soil experiment in pot was carried out. The results showed that residual penicillin (about 32 mg/kg) was almost degraded in the first 5 days, indicating that the drug pollution was in control. The pH value, DOC, DON, and DOC/DON presented a classical profile, but germination index (GI) leveled off about 0.13 till day 13 in DMF-12% treatment due to the severe phytotoxicity. The addition of DMF significantly increased the soil microbial populations in contrast to the CON treatment. The EEM showed that the protein-like and microbial byproduct-like matters vanished on the 25th and 33rd days, whereas the fulvic-like substances appeared on the 7th day. The humic-like substances existed in original samples but their content greatly enhanced finally. The FRI results showed that P V, ₙ/P III, ₙ reached the highest value of 1.84 on the 25th day, suggesting that DMF maintained stable in amended soil. Because of its consistency with the results of GI and DOC/DON, the EEM-FRI has a potential to evaluate the stability of DMF in soil.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library