Exposure to nanoplastics affects the outcome of infectious disease in phytoplankton
2021
Schampera, Charlotte | Wolinska, Justyna | Bachelier, Julien B. | de Souza Machado, Anderson Abel | Rossal S., J. Roberto (Julio Roberto Rossal Salazar) | González-Pleiter, Miguel | Agha, Ramsy
Infectious diseases of humans and wildlife are increasing globally but the contribution of novel artificial anthropogenic entities such as nano-sized plastics to disease dynamics remains unknown. Despite mounting evidence for the adverse effects of nanoplastics (NPs) on single organisms, it is unclear whether and how they affect the interaction between species and thereby lead to ecological harm. In order to incorporate the impact of NP pollution into host-parasite-environment interactions captured in the “disease triangle”, we evaluated disease outcomes in the presence of polystyrene NP using an ecologically-relevant host-parasite system consisting of a common planktonic cyanobacterium and its fungal parasite. NP at high concentrations formed hetero-aggregates with phytoplankton and inhibited their growth. This coincided with a significant reduction in infection prevalence, highlighting the close interdependency of host and parasite fitness. Lower intensity of infection in the presence of NP indicates that reduced disease transmission results from the parasite’s diminished ability to establish new infections as NP formed aggregates around phytoplankton cells. We propose that NP aggregation on the host’s surface acts as a physical barrier to infection and, by reducing host light harvesting, may also hamper parasite chemotaxis. These results demonstrate that the consequences of NP pollution go well beyond toxic effects at the individual level and modulate the intensity of species interactions, thereby potentially eliciting diverse cascading effects on ecosystem functioning.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library