Elevated pCO2 alters the interaction patterns and functional potentials of rearing seawater microbiota
2021
Lin, Weichuan | Lu, Jiaqi | Yao, Huaiying | Lu, Zhibin | He, Yimin | Mu, Changkao | Wang, Chunlin | Shi, Ce | Ye, Yangfang
Mean oceanic CO₂ values have already risen and are expected to rise further on a global scale. Elevated pCO₂ (eCO₂) changes the bacterial community in seawater. However, the ecological association of seawater microbiota and related geochemical functions are largely unknown. We provide the first evidence that eCO₂ alters the interaction patterns and functional potentials of microbiota in rearing seawater of the swimming crab, Portunus trituberculatus. Network analysis showed that eCO₂ induced a simpler and more modular bacterial network in rearing seawater, with increased negative associations and distinct keystone taxa. Using the quantitative microbial element cycling method, nitrogen (N) and phosphorus (P) cycling genes exhibited the highest increase after one week of eCO₂ stress and were significantly associated with keystone taxa. However, the functional potential of seawater bacteria was decoupled from their taxonomic composition and strongly coupled with eCO₂ levels. The changed functional potential of seawater bacteria contributed to seawater N and P chemistry, which was highlighted by markedly decreased NH₃, NH₄⁺-N, and PO₄³⁻-P levels and increased NO₂⁻-N and NO₃⁻-N levels. This study suggests that eCO₂ alters the interaction patterns and functional potentials of seawater microbiota, which lead to the changes of seawater chemical parameters. Our findings provide new insights into the mechanisms underlying the effects of eCO₂ on marine animals from the microbial ecological perspective.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library