Anthropogenic nitrate attenuation versus nitrous oxide release from a woodchip bioreactor
2022
White, Shane A. | Morris, Shaun A. | Wadnerkar, Praktan D. | Woodrow, Rebecca L. | Tucker, James P. | Holloway, Ceylena J. | Conrad, Stephen R. | Sanders, Christian J. | Hessey, Samantha | Santos, Isaac R.
Nitrogen loss via overland flow from agricultural land use is a global threat to waterways. On-farm denitrifying woodchip bioreactors can mitigate NO₃⁻ exports by increasing denitrification capacity. However, denitrification in sub-optimal conditions releases the greenhouse gas nitrous oxide (N₂O), swapping the pollution from aquatic to atmospheric reservoirs. Here, we assess NO₃⁻-N removal and N₂O emissions from a new edge-of-field surface-flow bioreactor during ten rain events on intensive farming land. Nitrate removal rates (NRR) varied between 5.4 and 76.2 g NO₃⁻-N m⁻³ wetted woodchip d⁻¹ with a mean of 30.3 ± 7.3 g NO₃⁻-N m⁻³. The nitrate removal efficiency (NRE) was ∼73% in ideal hydrological conditions and ∼18% in non-ideal conditions. The fraction of NO₃⁻-N converted to N₂O (rN₂O) in the bioreactor was ∼3.3 fold lower than the expected 0.75% IPCC emission factor. We update the global bioreactor estimated Q₁₀ (NRR increase every 10 °C) from a recent meta-analysis with previously unavailable data to >20 °C, yielding a new global Q₁₀ factor of 3.1. Mean N₂O CO₂-eq emissions (431.9 ± 125.4 g CO₂-eq emissions day⁻¹) indicate that the bioreactor was not significantly swapping aquatic NO₃⁻ for N₂O pollution. Our estimated NO₃⁻-N removal from the bioreactor (9.9 kg NO₃⁻-N ha⁻¹ yr⁻¹) costs US$13.14 per kg NO₃⁻-N removed and represents ∼30% NO₃⁻-N removal when incorporating all flow and overflow events. Overall, edge-of-field surface-flow bioreactors seem to be a cost-effective solution to reduce NO₃⁻-N runoff with minor pollution swapping to N₂O.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library