Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden
2018
We investigated the concentrations and temporal variability of organophospate esters (OPEs), halogenated flame retardants (HFRs) and polybrominated diphenyl ethers (PBDEs) in indoor and outdoor urban air in Stockholm, Sweden over one year (2014–2015) period. The median concentrations of the three target chemical groups (OPEs, HFRs, PBDEs) were 1–2 orders of magnitude higher in indoor air than outdoor urban air. OPEs were the most abundant target FRs with median concentrations in indoor (Σ10OPE = 340 000 pg/m3) and outdoor urban (Σ10OPEs = 3100 pg/m3) air, being 3 orders of magnitude greater than for HFRs in indoor (Σ15HFRs = 120 pg/m3) and outdoor urban (Σ15HFRs = 1.6 pg/m3) air. In indoor air, PBDE concentrations (Σ17PBDEs = 33 pg/m3) were lower than for the HFRs, but in outdoor urban air, concentrations (Σ17PBDEs = 1.1 pg/m3) were similar to HFRs. The most abundant OPEs in both the indoor and outdoor urban air were tris(2-butoxyethyl)phosphate (TBOEP), tris(chloroisopropyl)phosphate (TCIPP), tris(2-chloroethyl)phosphate (TCEP), tri-n-butyl-phosphate (TnBP), triphenyl phosphate (TPhP) and tris(1,3-dichloroisopropyl)phosphate (TDCIPP). TCIPP in indoor air was found in the highest concentrations and showed the greatest temporal variability, which ranged from 85 000 to 1 900 000 pg/m3 during the one-year sampling period. We speculate that activities in the building, e.g. floor cleaning, polishing, construction, introduction of new electronics and changes in ventilation rate could explain its variation. Some OPEs (TnBP, TCEP, TCIPP, TDCIPP and TPhP), HFRs/PBDEs (pentabromotoluene, 2, 3-dibromopropyl 2, 4, 6-tribromophenyl ether, hexabromobenzene, BDE-28, -47, and -99) in outdoor urban air showed seasonality, with increased concentrations during the warm period (p < 0.05, Pearson's r ranged from −0.45 to −0.91). The observed seasonality for OPEs was probably due to changes in primary emission, and those for the HFRs and PBDEs was likely due to re-volatilization from contaminated surfaces.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library