Removal of Cu(II) Ions from Aqueous Solution by Magnetic Chitosan-Tripolyphosphate Modified Silica-Coated Adsorbent: Characterization and Mechanisms
2017
Jin, Xu | Li, Kai | Ning, Ping | Bao, Shuangyou | Tang, Lihong
A magnetic chitosan-modified Fe₃O₄@SiO₂ with sodium tripolyphosphate adsorbent (MTPCS) was synthesized by surface modification of Fe₃O₄@SiO₂ with chitosan using sodium tripolyphosphate (STPP) as the cross-linker in buffer solution for the adsorption of Cu(II) ions from aqueous solution. The structure and morphology of this magnetic nanoadsorbent were examined by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), BET surface area measurements, Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The effects of initial pH, adsorbent amount, and initial concentration of heavy metal ions were investigated by batch experiments. Moreover, adsorption isotherms, kinetics, and thermodynamics were studied to understand the mechanism of adsorbing metal ions by synthesized MTPCS. The results revealed that adsorption kinetics was best depicted by the pseudo-second-order rate mode and intraparticle-diffusion models. The adsorption isotherm fitted well to the Langmuir model. Moreover, thermodynamic study verified the adsorption process was endothermic and spontaneous in nature. The maximum adsorption occurred at pH 5 ± 0.1, and the adsorbent could be used as a reusable adsorbent with convenient conditions.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library