Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans
2020
Shao, Huimin | Wang, Dayong
Functional state of intestinal barrier plays an important role for environmental animals in being against various toxicants. We investigated GATA transcriptional factor ELT-2-mediated intestinal response to nanopolystyrere in Caenorhabditis elegans. Prolonged exposure to nanopolystyrene (≥1 μg/L) induced an increase in expression of ELT-2, and intestinal RNA interference (RNAi) knockdown of elt-2 caused enhancement in intestinal permeability. Meanwhile, mutation of elt-2 resulted in susceptibility to nanopolystyrene toxicity, and ELT-2 functioned in intestine to regulate the nanopolystyrene toxicity. ERM-1, CLEC-63, and CLEC-85 were identified as targets of ELT-2 in regulating the nanopolystyrene toxicity. ERM-1 was required for maintaining functional state in intestinal barrier, and functioned synergistically with CLEC-63 or CLEC-85 to regulate nanopolystyrene toxicity. Therefore, activation of intestinal ELT-2 by nanopolystyrere could mediate a protective strategy to maintain the functional state of intestinal barrier. During this process, intestinal ELT-2 activated two different molecular signals (ERM-1 signal and CLEC-63/85 signal) for nematodes against the nanopolystyrene toxicity.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library