Incorporation of Electrochemically Exfoliated Graphene Oxide and TiO2 into Polyvinylidene Fluoride-Based Nanofiltration Membrane for Dye Rejection
2019
Suriani, A. B. | Muqoyyanah, | Mohamed, A. | Othman, M. H. D. | Rohani, R. | Yusoff, I. I. | Mamat, M. H. | Hashim, N. | Azlan, M. N. | Ahmad, M. K. | Marwoto, P. | Sulhadi, | Kusuma, H. H. | Birowosuto, M. D. | Khalil, H. P. S Abdul
In this work, the novel direct synthesis method of dimethylacetamide-based graphene oxide (GO) was performed through electrochemical exfoliation assisted by commercially available single-tail sodium dodecyl sulphate (SDS) surfactant. Then, the synthesised GO (SDS–GO) was incorporated into polyvinylidene fluoride (PVDF) solution to produce a nanofiltration (NF) membrane through the phase immersion method. The addition of GO into the preparation of membrane solution alters the membrane morphology and improves the hydrophilicity. TiO₂ was also used as an additive for the NF membrane fabrication to further increase the membrane hydrophilicity. The fabricated PVDF/SDS–GO/TiO₂ and PVDF/SDS–GO NF membranes were compared with pure PVDF membrane. Then, the fabricated NF membranes were tested for methylene blue (MB) rejection with 10 ppm MB concentration. On the basis of the dead-end cell measurement operated at the pressure of 2 bar, the PVDF/SDS–GO/TiO₂ presents high MB rejection (92.76%) and the highest dye flux (7.770 L/m² h). This dye flux value was sevenfold higher than that of pure PVDF membrane (1.146 L/m² h) which was due to the utilisation of both GO and TiO₂ that improved the membrane hydrophilicity as indicated by the lowest contact angle (64.0 ± 0.11°). High porosity (57.46%) also resulted in the highest water permeability (4.187 L/m² h bar) of the PVDF/SDS–GO/TiO₂ NF membrane.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library