Synthesis and characterization of fullerene modified ZnAlTi-LDO in photo-degradation of Bisphenol A under simulated visible light irradiation
2017
Ju, Liting | Wu, Pingxiao | Lai, Xiaolin | Yang, Shanshan | Gong, Beini | Chen, Meiqing | Zhu, Nengwu
In this study, ZnAlTi layered double hydroxide (ZnAlTi-LDH) combined with fullerene (C60) was fabricated by the urea method, and calcined under vacuum atmosphere to obtain nanocomposites of C60-modified ZnAlTi layered double oxide (ZnAlTi-LDO). The morphology, structure and composition of the nanocomposites were analyzed by Scanning Electron Microscopy, High-resolution transmission electron microscopy, X-ray diffraction patterns, Fourier transform infrared and specific surface area. The UV-vis diffuse reflectance spectra indicated that the incorporation of C60 expanded the absorption of ZnAlTi-LDO to visible-light region. The photo-degradation experiment was conducted by using a series of C60 modified ZnAlTi-LDO with different C60 weight percentage to degrade Bisphenol A (BPA) under simulated visible light irradiation. In this experiment, the degradation rate of C60 modified ZnAlTi-LDO in photo-degradation of BPA under simulated visible light irradiation was over 80%. The intermediates formed in the degradation of BPA process by using LDO/C60-5% were 4-hydroxyphenyl-2-propanol, 4-isopropenylphenol and Phenol. Photogenerated holes, superoxide radical species, ·OH and singlet oxygen were considered to be responsible for the photodegradation process, among which superoxide radical species and ·OH played a predominant role in the photocatalytic reaction system. C60 modified ZnAlTi-LDO catalysts for photocatalytic reduction shows great potential in degradation of organic pollutants and environmental remediation.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library