Membrane biofouling retardation by zwitterionic peptide and its impact on the bacterial adhesion
2019
Wang, Si-Yu | Han, Deng-Cheng | Song, Chao | Li, Meng-Na | Afzal, Muhammad Zaheer | Wang, Shu-Guang | Sun, Xue-Fei
Nanofiltration polyamide membranes naturally tend towards biofouling, due to their surface physicochemistries. Nisin, a type of short cationic amphiphilic peptide with antimicrobial properties, has been recognized as a safe antimicrobial for food biopreservation and biomedical applications. This study investigates the impact of nisin on the initial bacterial attachment to membranes, its anti-biofouling properties, and characterizes a non-monotonic correlation between nisin concentration and biofilm inhibition. Nisin was found to inhibit B. subtilis (G+) and P. aeruginosa (G−) attachment to both the nanofiltration membrane and the PES membrane. To determine the mechanism of action, we investigated the polysaccharides, protein, and eDNA as target components. We found that the quantities of polysaccharides and eDNA were significantly changed, resulting in bacterial death and anti-adhesion to membrane. However, there were no discernable impacts on protein. We postulated that nisin could prevent irreversible biofouling by decreasing adhesion, killing bacteria, and reducing biofilm formation. We examined membrane flux behavior through bench-scale cross-flow experiments at a set concentration of nisin (100 μg mL⁻¹), with membrane behavior being confirmed using CLSM images. Results showed that nisin could enhance anti-biofouling properties through both anti-adhesive and anti-bacterial effects, and therefore could be a novel strategy against biofouling of membranes.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library