Intelligent multivariable air-quality forecasting system based on feature selection and modified evolving interval type-2 quantum fuzzy neural network
2021
Wang, Jianzhou | Li, Hongmin | Yang, Hufang | Wang, Ying
Owing to the high nonlinearity and noise in the air quality index (AQI), tackling the uncertainties and fuzziness in the forecasting process is still a prevalent problem. Therefore, this study developed an intelligent hybrid air-quality forecasting system based on feature selection and a modified evolving interval type-2 quantum fuzzy neural network (eIT2QFNN), which provides accurate air-quality forecasting information by considering climate influencing factors. The main contributions of this study are as follows. The optimal input structure of the model is determined by the proposed second-stage feature-selection model, which can better extract the influencing variables and remove redundant information. Moreover, a novel multi-objective chaotic Bonobo optimizer algorithm is proposed to improve the eIT2QFNN. The modified eIT2QFNN implements AQI prediction by considering the importance of influencing variables that can cope with the uncertainties and fuzziness in the forecasting process. Finally, the Diebold-Mariano and modified Diebold-Mariano tests are employed to evaluate the performance of the proposed system. The experimental results demonstrate that our proposed system significantly improves the modeling performance in terms of high accuracy and compact structure, and can thus serve as an effective tool for air-quality management.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library