Modulation of the toxic effects of zinc oxide nanoparticles by exogenous salicylic acid pretreatment in Chenopodium murale L
2021
Taherbahrani, Saadiyeh | Zoufan, Parzhak | Zargar, Behrooz
Due to many uses of zinc oxide nanoparticles (ZnO NPs) in various industries, the release of these particles in the environment and their effects on living organisms is inevitable. In this study, the role of salicylic acid (SA) pretreatments in modulating the toxicity of ZnO NPs was investigated using a hydroponic system. After pretreatment with different concentrations of SA (0, 25, 75, and 150 μM), Chenopodium murale plants were exposed to ZnO NPs (50 mg L⁻¹). The results showed that exogenous SA increased the length, weight, chlorophyll, proline, starch, and soluble sugars in the plants. Besides, SA pretreatments improved water status in the plants treated with ZnO NPs. In SA-pretreated plants, increased activity of catalase (CAT), guaiacol peroxidase (GPX), and superoxide dismutase (SOD) was associated with a decline in electrolyte leakage (EL %) and membrane peroxidation. Under NPs stress, SA pretreatments increased the content of phenolic compounds by increasing the activity of phenylalanine ammonia-lyase (PAL). Exogenous SA reduced the translocation of larger amounts of Zn to the shoots, with more accumulation in the roots. This result can be used to produce healthy food from plants grown in environments contaminated with nanoparticles. It seems that all concentrations of SA reduced the symptoms of ZnO NPs toxicity in the plant by strengthening the function of the antioxidant system and increasing the content of some metabolites. Findings also suggest that SA pretreatment can compensate for the growth reduction caused by ZnO NPs.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library