Characterization and Selection of Packing Materials for Biofiltration of Rendering Odourous Emissions
2013
Anet, Benoît | Couriol, Catherine | Lendormi, Thomas | Amrane, Abdeltif | Le Cloirec, Pierre | Cogny, Gilles | Fillières, Romain
Robust and cheap, biofiltration is one of the most used methods for the biological treatment of industrial gaseous odours and VOCs emissions. The chemical, physical and microbial properties, as well as the economical impact of 11 organic and inorganic packing materials potentially suitable for biofiltration, have been investigated in order to select the most relevant for the treatment of rendering gaseous emissions. Fibrous materials such as peat and coconut fibres are predisposed to compaction. Moreover, according to their low expected running period, their implementation remains expensive, such as activated carbon which induce overweening costs (>100,000€ an -1 for the treatment of 40,000 m3 h-1 with a 60-s empty bed gas residence time). Considering economical aspects, physico-chemical and biological properties, pines barks, composted wood mulch and expanded schist seem fit for this application. The performance of these materials was therefore investigated in a pilot-scale study conducted on a rendering site. According to its appropriate pH (8.62) and water-holding capacity (1.41 g g-1) and its highest nutrients content and colonization at the biofilter start-up (93 g of ATP m-3, 29.10 13 CFU m-3), composted would mulch show the best odour removal efficiency during the 134 days of operation. Performances ranged between 75 and 93 % for the treatment of odourous inlet load between 1.16 and 10.10·106 ouE m-3 h-1 with an empty bed gas residence time of 47 s. However, the pressure drop of the compost bed decreased, suggesting structural changes which may impact the performances in the long term. © 2013 Springer Science+Business Media Dordrecht.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library