Cu and Ni Mobility and Bioavailability in Sequentially Conditioned Soils
2010
Maderova, Lenka | Dawson, Julian J. C. | Paton, Graeme I.
The potential ecological hazard of metals in soils may be measured directly using a combination of chemical and biological techniques or estimated using appropriate ecological models. Terrestrial ecotoxicity testing has gained scientific credibility and growing regulatory interest; however, toxicity of metals has often been tested in freshly amended soils. Such an approach may lead to derivation of erroneous toxicity values (EC₅₀) and thresholds. In this study, the impact of metal amendments on soil ecotoxicity testing within a context of ion competition was investigated. Four coarse-textured soils were amended with copper (Cu) and nickel (Ni), incubated for 16 weeks and conditioned by a series of total pore water replacements. RhizonTM extracted pore water Cu, Ni, pH and dissolved organic carbon (DOC) concentrations were measured after each replacement. Changes in ecotoxicity of soil solutions were also monitored using a lux-based biosensor (Escherichia coli HB101 pUCD607) and linked to variations in soil solution metal and DOC concentrations, pH and selected characteristics of the experimental soils (exchangeable calcium (Ca) and magnesium (Mg)). Prior to conditioning of soils, strong proton competition produced relatively high EC₅₀ values (low toxicity) for both, Cu and Ni. The successive replacement of pore waters lead to a decline of labile pools of metals, DOC and alleviated the ecotoxicological protective effect of amendment impacted soil solution chemistry. Consequently, derived ecotoxicity values and toxicity thresholds were more reflective of genuine environmental conditions and the relationships observed more consistent with trends reported in historically contaminated soils.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library