Per-, poly-fluoroalkyl substances (PFASs) and planktonic microbiomes: Identification of biotic and abiotic regulations in community coalescence and food webs
2022
Wu, Jian-yi | Hua, Zu-lin | Gu, Li
The importance of per-, poly-fluoroalkyl substances (PFASs) effects on riverine microbiomes is receiving increased recognition in the environmental sciences. However, few studies have explored how PFASs affect microbiomes across trophic levels, specifically through predator-prey interactions. This study examined the community profiles of planktonic archaea, bacteria, fungi, algae, protozoa, and metazoa in a semi-industrial and agricultural river alongside their interactions with 15 detected PFASs. As abiotic factors, PFASs affected community coalescence more than biogenic substances (p < 0.05). For biotic regulations, sub-communities in rare biospheres (including always rare taxa-ART and critically rare taxa-CRT) contributed to spatial community coalescence more than sub-communities in abundant biospheres (always abundant taxa-AAT and critically abundant taxa-CAT) (p < 0.05). Metazoa-bacteria (Modularity = 1.971) and protozoa-fungi (1.723) were determined to be the most stable predator-prey networks. Based on pathway models, short-chain PFBA (C4) was shown to weaken the trophic transfer efficiencies from heterotrophic bacteria (HB) to heterotrophic flagellates (HF) (p < 0.05). Long-chain PFTeDA (C14) promoted HB to amoeba (p < 0.05), which we postulate is the pathway for PFTeDA to enter the microbial food chain. Our preliminary results elucidated the influence of PFASs on planktonic microbial food webs and highlighted the need to consider protecting and remediating riverine ecosystems containing PFASs.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library