A novel multi-factor & multi-scale method for PM2.5 concentration forecasting
2019
Yuan, Wenyan | Wang, Kaiqi | Bo, Xin | Tang, Ling | Wu, JunJie
In the era of big data, a variety of factors (particularly meteorological factors) have been applied to PM2.5 concentration prediction, revealing a clear discrepancy in timescale. To capture the complicated multi-scale relationship with PM2.5-related factors, a novel multi-factor & multi-scale method is proposed for PM2.5 forecasting. Three major steps are taken: (1) multi-factor analysis, to select predictive factors via statistical tests; (2) multi-scale analysis, to extract scale-aligned components via multivariate empirical mode decomposition; and (3) PM2.5 prediction, including individual prediction at each timescale and ensemble prediction across different timescales. The empirical study focuses on the PM2.5 of Cangzhou, which is one of the most air-polluted cities in China, and indicates that the proposed multi-factor & multi-scale learning paradigms statistically outperform their corresponding original techniques (without multi-factor and multi-scale analysis), semi-improved variants (with either multi-factor or multi-scale analysis), and similar counterparts (with other multi-scale analyses) in terms of prediction accuracy.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library