Tree bark as a biomonitor for assessing the atmospheric pollution and associated human inhalation exposure risks of polycyclic aromatic hydrocarbons in rural China
2019
Niu, Lili | Xu, Chao | Zhou, Yuting | Liu, Weiping
Inhalation exposure to atmospheric polycyclic aromatic hydrocarbons (PAHs) is posing a great threat to human health. Biomass combustion in rural areas contributes greatly to the total PAH emission in China. To conduct a comprehensive risk assessment of ambient PAHs in rural China, a nationwide air sampling campaign was carried out in this study. The 16 U.S. Environmental Protection Agency priority PAHs in tree bark, which was employed as a passive air sampler, were analyzed. The summation of the 16 PAHs ranged from 11.7 to 12,860 ng/m³ in the air of rural China. The national median benzo(a)pyrene equivalent (BaPₑq) concentration was 18.4 ng/m³, with the range from 0.334 to 2497 ng/m³. The total inhalation carcinogenic risks of individual PAHs, with the exception for naphthalene, were very low (<1 × 10⁻⁶) at most of the sampling sites. The national median excess lifetime lung cancer risk associated with inhalation exposure to atmospheric PAHs was 20.3 × 10⁻⁶, corresponding to a population attributable fraction (PAF) of 3.38‰. Our estimations using tree bark were comparable to those reported in other studies and the uncertainties of the variables in the dataset were within the acceptable levels, demonstrating that tree bark is feasible for assessing the atmospheric PAH pollution and associated health risks. We feel that the outputs from this study can assist decision-makers focusing on protecting human health against exposure to atmospheric PAHs in rural China.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library