Seasonal variation in release characteristics and mechanisms of sediment phosphorus to the overlying water in a free water surface wetland, southwest China
2022
Liang, Qibin | Chen, Ting | Wang, Yanxia | Gao, Lei | Hou, Lei
Geochemical cycling of iron (Fe) mediated by sediment microbes drives the remobilization of phosphorus (P). Understanding the underlying mechanism is essential for the evaluation of P retention by wetlands. The diffusive gradients in thin film (DGT) and 16S rDNA sequencing techniques were combined to explore seasonal variations in the remobilization mechanism of sediment P in a free water surface wetland in southwest China. A significantly positive correlation between labile P and Fe concentrations was found from the sediment profiles, indicating coupled remobilization of Fe and P in the sediment. Fe-reducing bacterial genera, particularly Sphingomonas and Geothermobacter, were responsible for the reductive dissolution of Fe oxides and subsequent P release in sediment. The efflux of sediment P was higher in the rainy season (95 ± 87 ng cm⁻² d⁻¹) than in the dry season (39 ± 29 ng cm⁻² d⁻¹). Based on the significantly positive relationship between the efflux and total concentration of sediment P, we propose a promising regression equation for quantifying the release risk of sediment P. The Luoshijiang Wetland exhibited a higher release potential as indicated by a greater regression slope (0.558) compared to the other water bodies (0.055), which was mainly attributed to the lower labile Fe:P molar ratio in the sediment. Based on estimations of the diffusive flux of P at the sediment-water interface, sediment contributed more than 172 and 413 g of P per day to the water column in the dry and rainy seasons, respectively, accounting for 14.0% and 1.9% of the P mass in the surface water of the wetland.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library