Responses of soil and earthworm gut bacterial communities to heavy metal contamination
2020
Liu, Peng | Yang, Yang | Li, Mei
The large accumulation of heavy metals in the soil surrounding steel factories has become a severe environmental problem. However, few studies have focused on how the earthworm gut microbiota responds to heavy metals in the soil. This study used research sites at a steel factory in Nanjing, China, to investigate how the soil bacterial community and earthworm gut microbiota respond differently to heavy metal contamination using Illumina high-throughput sequencing targeting 16S rRNA genes. The bacterial community of earthworm guts showed a distinct structure compared with that of the soil, featuring a higher relative abundance of Proteobacteria (45.7%) and Bacteroidetes (18.8%). The bacterial community in the earthworm gut appeared more susceptible to heavy metal contamination compared with the soil community. For example, we identified 38 OTUs (Operational taxonomic units) significantly influenced by contamination among 186 abundant OTUs in the soil, whereas 63 out of the 127 abundant OTUs in the earthworm gut were altered significantly under contamination. This susceptibility may be partly explained by the lower alpha diversity and distinct microbial interactions in the gut. In addition, the accumulation of heavy metals also stimulated the growth of potential plant growth promoting bacteria (PGPB) in the earthworm gut, especially those related to indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid deaminase (ACCD) production, which may potentially benefit the phyto-remediation of heavy metals. These results contribute to our understanding of the soil biota and its interactions under heavy metal contamination and may provide further insights into the phyto-remediation of metal-contaminated soil.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library