Development of physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) model for 4-nonylphenol (4-NP) reflecting physiological changes according to age in males: Application as a new risk assessment tool with a focus on toxicodynamics
2022
Jeong, Seung-Hyun | Jang, Ji-Hun | Lee, Yong-Bok
Environmental exposure to 4-nonylphenol (4-NP) is extensive, and studies related to human risk assessment must continue. Especially, prediction of toxicodynamics (TDs) related to reproductive toxicity in males is very important in risk-level assessment and management of 4-NP. This study aimed to develop a physiologically-based-toxicokinetic-toxicodynamic (PBTK-TD) model that added a TD prostate model to the previously reported 4-n-nonylphenol (4-n-NP) physiologically-based-pharmacokinetic (PBPK) model. Modeling was performed under the assumption of similar TKs between 4-n-NP and 4-NP because TK experiments on 4-NP, a random-mixture, are practically difficult. This study was very important to quantitatively predict the TKs and TDs of 4-NP by age at exposure using an advanced PBTK-TD model that reflected physiological-changes according to age. TD-modeling was performed based on the reported toxic effects of 4-NP on RWPE-1 cells, a human-prostate-epithelial-cell-line. Through a meta-analysis of reported human physiological data, body weight, tissue volume, and blood flow rate patterns according to age were mathematically modeled. These relationships were reflected in the PBTK-TD model for 4-NP so that the 4-NP TK and TD changes according to age and their differences could be confirmed. Differences in TK and TD parameters of 4-NP at various ages were not large, within 3.61-fold. Point-of-departure (POD) and reference-doses for each age estimated using the model varied as 426.37–795.24 and 42.64–79.52 μg/kg/day, but the differences (in POD or reference doses between ages) were not large, at less than 1.87-times. The PBTK-TD model simulation predicted that even a 100-fold 4-NP PODₘₐₙ dose would not have large toxicity to the prostate. With a focus on TDs, the predicted maximum possible exposure of 4-NP was as high as 6.06–23.60 mg/kg/day. Several toxicity-related values estimated by the dose-response curve were higher than those calculated, depending upon the PK or TK, which would be useful as a new exposure limit for prostate toxicity of 4-NP.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library