Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream
2011
Lapworth, Dan J. | Gooddy, Daren C. | Jarvie, Helen P.
This paper investigates the changes in bioavailable phosphorus (P) within the hyporheic zone of a groundwater-dominated chalk stream. In this study, tangential flow fractionation is used to investigate P associations with different size fractions in the hyporheic zone, groundwater and surface water. P speciation is similar for the river and the chalk aquifer beneath the hyporheic zone, with ‘dissolved’ P (<10Â kDa) accounting for ~90% of the P in the river and >90% in the deep groundwaters. Within the hyporheic zone, the proportion of ‘colloidal’ (<0.45Â μm and >10Â kDa) and ‘particulate’ (>0.45Â μm) P is higher than in either the groundwater or the surface water, accounting for ~30% of total P. Our results suggest that zones of interaction within the sand and gravel deposits directly beneath and adjacent to river systems generate colloidal and particulate forms of fulvic-like organic material and regulate bioavailable forms of P, perhaps through co-precipitation with CaCO3. While chalk aquifers provide some degree of protection to surface water ecosystems through physiochemical processes of P removal, where flow is maintained by groundwater, ecologically significant P concentrations (20–30Â μg/L) are still present in the groundwater and are an important source of bioavailable P during baseflow conditions. The nutrient storage capacity of the hyporheic zone and the water residence times of this dynamic system are largely unknown and warrant further investigation.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library