Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings
2021
Zhang, Nan | Huang, Lin | Zhang, Yuxue | Liu, Lijuan | Sun, Chengliang | Lin, Xianyong
Sulfur, an essential macronutrient, plays important roles in plant development and stress mitigation. Sulfur deficiency, a common problem in agricultural soils, may disturb plant stress resistance and xenobiotic detoxification. In the present study, the function and mechanism of limited sulfur nutrition on the residues and phtotoxicity of imidacloprid were investigated in lettuce plants. Sulfur deficiency significantly increased imidacloprid accumulation in lettuce tissues, exacerbated imidacloprid biological toxicity by enhancing the accumulation of toxic metabolites, like imidacloprid-olefin. Simultaneously, imidacloprid-induced detoxification enzymes including cytochromes P450, glutathione S-transferases (GSTs) and glycosyltransferases were inhibited under limited sulfur supply. On the other hand, sulfur deficiency further enhanced the generation of reactive oxygen species and exacerbated lipid peroxidation in lettuce tissues. Sulfur deficiency mainly reduced the abundance of thiol groups, which are essential redox modulators as well as xenobiotic conjugators, and significantly inhibited GSTs expression. These results clearly suggested that sulfur deficiency inhibited the synthesis of sulfur-containing compounds, leading to increased accumulation of pesticide residues and toxic metabolites as well as reduced detoxification capacity, consequently leading to oxidative damage to plants. Therefore, moderate sulfur supply in regions where neonicotinoid insecticides are intensively and indiscriminately used may be an efficient strategy to reduce pesticide residues and the potential risk to ecosystem.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library