A Harmonious Satellite-Unmanned Aerial Vehicle-Ground Measurement Inversion Method for Monitoring Salinity in Coastal Saline Soil
2019
Zhang, Suming | Zhao, Gengxing
Soil salinization adversely impacts crop growth and production, especially in coastal areas which experience serious soil salinization. Therefore, rapid and accurate monitoring of the salinity and distribution of coastal saline soil is crucial. Representative areas of the Yellow River Delta (YRD)—the Hekou District (the core test area with 140 sampling points) and the Kenli District (the verification area with 69 sampling points)—were investigated. Ground measurement data, unmanned aerial vehicle (UAV) multispectral imagery and Sentinel-2A multispectral imagery were used as the data sources and a satellite-UAV-ground integrated inversion of the coastal soil salinity was performed. Correlation analyses and multiple regression methods were used to construct an accurate model. Then, a UAV-based inversion model was applied to the satellite imagery with reflectance normalization. Finally, the spatial and temporal universality of the UAV-based inversion model was verified and the soil salinity inversion results were obtained. The results showed that the green, red, red-edge and near-infrared bands were significantly correlated with soil salinity and the spectral parameters significantly improved this correlation; hence, the model is more effective upon combining spectral parameters with sensitive bands, with modeling precision and verification precision of the best model being 0.743 and 0.809, respectively. The reflectance normalization yielded good results. These findings proved that applying the UAV-based model to reflectance normalized Sentinel-2A images produces results that are consistent with the actual situation. Moreover, the inversion results effectively reflect the distributions characteristic of the soil salinity in the core test area and the study area. This study integrated the advantages of satellite, UAV and ground methods and then proposed a method for the inversion of the salinity of coastal saline soils at different scales, which is of great value for real-time, rapid and accurate soil salinity monitoring applications.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library