أجريس - النظام الدولي للعلوم الزراعية والتكنولوجيا

Assessing machine-learning algorithms and image- and lidar-derived variables for GEOBIA classification of mining and mine reclamation

2015

Maxwell, A.E. | Warner, T.A. | Strager, M.P. | Conley, J.F. | Sharp, A.L.

الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)

المعلومات البيبليوغرافية
International journal of remote sensing
المجلد 36 الإصدار 4 ترقيم الصفحات 954 - 978 الرقم التسلسلي المعياري الدولي (ردمد) 1366-5901
الناشر
Taylor & Francis
مواضيع أخرى
Support vector machines
اللغة
إنجليزي
ملاحظة
Funding support for this study was provided by West Virginia View, Alderson Broaddus University, and the Appalachian Research Initiative for Environmental Science (ARIES). The project described in this publication was also supported in part by Grant/Cooperative Agreement Number [08HQGR0157] from the United States Geological Survey via a subaward from AmericaView. This work was supported by the ARIES and United States Geologic Survey [grant number 08HQGR0157]. The views, opinions, and recommendations expressed herein are solely those of the authors and do not imply any endorsement by ARIES employees, other ARIES-affiliated researchers or industrial members. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the USGS.
النوع
Journal Article; Text

2024-02-29
MODS
مزود البيانات
تصفح الباحث العلمي من جوجل
إذا لاحظت أي معلومات غير صحيحة تتعلق بهذا السجل ، يرجى الاتصال بنا [email protected]