PM2.5 induces intestinal damage by affecting gut microbiota and metabolites of rats fed a high-carbohydrate diet
2021
Liu, Jinhua | Su, Xianghui | Lu, Jianjiang | Ning, Jianying | Lin, Meng | Zhou, Hongjuan
PM₂.₅ has a major impact on the gastrointestinal system, but the specific mechanism behind this action is not fully understood. Current studies have focused on the relationship between PM₂.₅ and intestinal flora disorder, while ignoring the important influence of diet on gut microbes. In this study, SD rats were fed either a normal, high-fat, or high-carbohydrate diet for two months and exposed to PM₂.₅ (7 mg/kg b.w.) by intratracheal instillation. The results showed that the body and kidney weights of the rats in the high-fat diet group were significantly increased relative to those with a normal diet, and changes in the intestinal microbes and metabolites induced by PM₂.₅ were observed. Rats in the high-carbohydrate diet group had a significant response, and the diversity and richness indices of the flora were reduced (p < 0.05); additionally, intestinal Biffidobacterium and Lactobacillus were enriched, while many endogenous metabolites were found. Some amino acids derivatives and long-chain fatty acids were increased (p < 0.05). Both diet structure and PM₂.₅ exposure can affect the composition of gut microbiota, and intestinal metabolites may be associated with cell membrane damage when a high-carbohydrate diet interacts with PM₂.₅. This study considers multiple dietary factors to further supplement the evidence of intestinal damage via PM₂.₅.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library