Competitive Adsorption of Cr (VI) and Ni (II) onto Coconut Shell Activated Carbon in Single and Binary Systems
2013
Wu, Yunhai | Yilihan, Palizhati | Cao, Julin | Jin, Yanping
The comparative and competitive adsorption of Cr(VI) and Ni(II) in single and binary systems using coconut shell activated carbon (CSAC) was investigated. The CSAC was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM). The effects of pH, initial metal concentration, and temperature on the adsorption of metal ions were studied. Cr(VI) removal was found to be maximum (94.5 %) at pH = 2.0. While, Ni(II) removal was found to be maximum at pH = 9.0 (58.92 %). The adsorption capacity of Cr(VI) was greater than that of Ni(II) in single component system. Parameters of adsorption isotherm model, kinetics, and thermodynamics were calculated. The single ion equilibrium adsorption data were fitted to the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. The Langmuir and Freundlich models represented the equilibrium data better than the D-R model. The result of the fitting of D-R isotherm model indicated a physical adsorption process. The adsorption kinetic data of Cr(VI) and Ni(II) were found fitting well in pseudo second-order equation both in single and binary system (r 2 > 0.99) and intraparticle diffusion was the rate controlling step. The negative ΔG and the positive ΔH indicated the spontaneous and endothermic nature of the adsorption process. The extended Langmuir isotherm model fitted well with the competitive adsorption data of Cr(VI) and Ni(II). For the desorption experiments, EDTA showed the maximum desorption efficiency of 69 % for Cr(VI) and 81 % for Ni(II). © 2013 Springer Science+Business Media Dordrecht.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library