Two NADPH:protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings
1995
Reinbothe, S. | Reinbothe, C. | Holtorf, H. | Apel, K.
Chlorophyll synthesis in barley is controlled by two different light-dependent NADPH:protochlorophyllide oxidoreductases, termed PORA and PORB. PORA is present abundantly in etioplasts but selectively disappears soon after the beginning of illumination. This negative light effect is mediated simultaneously at three different levels. First, the concentration of porA mRNA declines drastically during illumination of dark-grown seedlings. Second, the plastics' ability to import the precursor of PORA (pPORA) is reduced during the transition from etioplasts to chloroplasts. This effect is due to a rapid decline in the plastidic level of protochlorophyllide (Pchlide), which is required for the translocation of the pPORA. Third, PORA becomes selectively destabilized in illuminated seedlings. When illuminated, PORA-Pchlide-NADPH complexes formed in the dark photoreduce their Pchlide to Chlide and become simultaneously susceptible to attack by plastic proteases. The PORA-degrading protease activity is not detectable in etioplasts but is induced during illumination. In contrast to PORA, the second Pchlide-reducing enzyme, PORB, remains operative in both illuminated and green plants. Its translocation into plastics does not depend on its substrate, Pchlide.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library