Feasibility of reducing three-dimensional wave energy by introducing periodic foundations
2013
Shi, Zhifei | Huang, Jiankun
A new seismic isolation foundation called the periodic foundation is proposed, which can be described as a three-dimensional typical cell consisting of a high density core, a soft coating and a concrete matrix. Utilizing the attenuation zones (AZs) resulted by the periodicity of the foundation, the mechanism of this new seismic isolation system is different from the traditional ones. The seismic waves with the frequencies in the AZs cannot propagate across the foundation. Thus, the seismic responses on the top surface of the periodic foundation can be reduced significantly. In this paper, the dispersion curves of the three-dimensional three-component (3D–3C) periodic foundations are analyzed by the finite element method (FEM). The influencing factors such as physical and geometrical parameters of the typical cell are investigated. In order to verify its feasibility, a three-dimensional (3D) soil-foundation finite element model is analyzed, and the frequency zones of seismic attenuations are consistent with the AZs. The periodic foundation can greatly reduce the seismic response, which implies that the periodic foundation has a great potential application on seismic isolation.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library