Effects of Walnut Leaves Biochars on Lead and Zinc Fractionation and Phytotoxicity in a Naturally Calcareous Highly Contaminated Soil
2019
Kabiri, Parvin | Motaghian, Hamidreza | Hosseinpur, Alireza
The aim of this study was to investigate the impact of incorporating Walnut leaves (WL) and their biochars produced at three temperatures (200, 400, and 600 °C) on fractionation, availability and maize indices in a naturally calcareous highly contaminated soil of Central Iran. A pot experiment was conducted considering soils treated with 0, 0.5, 1, and 2% (w/w) of WL and their derived biochars. After maize (Zea mays L.) planting, shoot and root dry matter and Pb and Zn concentration in shoots and roots and DTPA-extractable and fractions of Zn and Pb in soils were determined. Results showed showed that biochar amendments substantially modified the partitioning of Zn and Pb from easily available forms to less available forms. The results showed that DTPA-extractable of Zn and Pb and their bioaccumulation were reduced upon the addition of biochars produced at different temperatures and application rates in a calcareous soil. Treating soil with 2% biochar produced at 600 °C increased significantly shoot and root dry matter by 131.4% and 116.7%, respectively and reduced the bioavailability of Zn and Pb (DTPA-TEA extraction) by 49.1%, and 34.9%, respectively (P < 0.05) in comparison to the control. Therefore, biochars were able to reduce metals contamination in treatments and increase maize dry matter. Biochar decreased Zn and Pb concentration in plant tissues and promoted gradual maize growth responses through changing metals fractions. Therefore, biochar as a sorbent for contaminants can assist in maize to mitigate and phytostabilize Zn and Pb in highly contaminated soils.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل National Agricultural Library