أجريس - النظام الدولي للعلوم الزراعية والتكنولوجيا

The Effect of Salicylic and Abscisic Acids Application on Mitigating the Oxidative Stress Factors under Osmotic and Salinity Stresses in Some Wheat (Triticum spp.) Varieties

2023

Nebal Nour Aldeen

الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)

المعلومات البيبليوغرافية
الناشر
Damascus University . Faculty of agricultural engineering
مواضيع أخرى
Salicylic acid; الإجهاد الحلولي; الإجهاد الملحي; حمض الصفصاف; حمض الأبسيسيك
اللغة
عربي
ملاحظة
References 1. Abd El-Samad, H. M., Shaddad, M. A. K., & Ragaey, M. M. (2019). Drought strategy tolerance of four barley cultivars and combined effect with salicylic acid application. American Journal of Plant Sciences, 10(4), 512-535. 2. Abdelaal, K. A., Attia, K. A., Alamery, S. F., El-Afry, M. M., Ghazy, A. I., Tantawy, D. S., Al-Doss, A.; El-Shawy, E.-S.E.; Abu-Elsaoud, A.; Hafez, Y.M. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12(5), 1736. 3. Abdel-Lattif, H. M., Abbas, M. S., & Taha, M. H. (2019). Effect of salicylic acid on productivity and chemical constituents of some wheat (Triticum aestivum L.) varieties grown under saline conditions. JAPS: Journal of Animal & Plant Sciences, 29(4). 4. Agami, R. A., & Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94, 164-171. 5. Agarwal, S., Sairam, R. K., Srivastava, G. C., & Meena, R. C. (2005,a). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum, 49(4), 541-550. 6. Agarwal, S., Sairam, R. K., Srivastava, G. C., Tyagi, A., & Meena, R. C. (2005,b). Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science, 169(3), 559-570. 7. Ahmad, P., Alyemeni, M. N., Ahanger, M. A., Egamberdieva, D., Wijaya, L., & Alam, P. (2018 a). Salicylic acid (SA) induced alterations in growth, biochemical attributes and antioxidant enzyme activity in faba bean (Vicia faba L.) seedlings under NaCl toxicity. Russian Journal of Plant Physiology, 65(1), 104-114. 8. Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G., & Sharma, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical reviews in biotechnology, 30(3), 161-175. 9. Ahmad, R., Hussain, S., Anjum, M. A., Khalid, M. F., Saqib, M., Zakir, I., ... & Ahmad, S. (2019). Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches, 191-205. 10. Ahmad, Z., Waraich, E. A., Akhtar, S., Anjum, S., Ahmad, T., Mahboob, W., ... & Rizwan, M. (2018 b). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum, 40, 1-13.11. Akbulut, G. B., Yigit, E., Kaya, A., & Aktas, A. (2018). Effects of salicylic acid and organic selenium on wheat (Triticum aestivum L.) exposed to fenoxaprop-p-ethyl. Ecotoxicology and Environmental Safety, 148, 901-909. 12. Al Mahmud, J., Biswas, P. K., Nahar, K., Fujita, M., & Hasanuzzaman, M. (2019). Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobotanica, 72(2). 13. Alamri, S. A. D., Siddiqui, M. H., Al-Khaishany, M. Y., Ali, H. M., Al-Amri, A., & AlRabiah, H. K. (2018). Exogenous application of salicylic acid improves tolerance of wheat plants to lead stress. Adv. Agric. Sci, 6(2). 14. AL-Ouda, A. S. (1999). Genetic variability in temperature and moisture stress tolerance in sunflower (Helianthus annus L.) hybrids: Assessment of some physiological and biochemical traits (Doctoral dissertation, Ph. D. Thesis Submitted to Crop Physiology Dept., UAS, Bangalore, India. 15. Alsahli, A., Mohamed, A. K., Alaraidh, I., Al-Ghamdi, A., Al-Watban, A., El-Zaidy, M., & Alzahrani, S. M. (2019). Salicylic acid alleviates salinity stress through the modulation of biochemical attributes and some key antioxidants in wheat seedlings. Pak. J. Bot, 51(5), 1551-1559. 16. Amini, F., & Ehsanpour, A. A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology, 1(4), 212-216. 17. Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African journal of agricultural research, 6(9), 2026-2032. 18. Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants, 199(5), 361-376. 19. Bali, Aditi Shreeya, and Gagan Preet Singh Sidhu. "Abiotic stress-induced oxidative stress in wheat." Wheat Production in Changing Environments: Responses, Adaptation and Tolerance (2019): 225-239. 20. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207. 21. Bradford, M. M .1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein due binding. Annals of Biochemistry, 72: 248- 254. 22. Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annual review of biochemistry, 58(1), 79-110.23. Caverzan, A., Passaia, G., Rosa, S. B., Ribeiro, C. W., Lazzarotto, F., & Margis-Pinheiro, M. (2012). Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Genetics and molecular biology, 35, 1011-1019. 24. Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant physiology, 87(3), 547-550. 25. Choudhary, S., Wani, K. I., Naeem, M., Khan, M. M. A., & Aftab, T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation, 42(2), 539-553. 26. Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y., & Grill, E. (2006). Integration of abscisic acid signalling into plant responses. Plant biology, 8(03), 314-325. 27. Dat, J., Vandenabeele, S., Vranova, E. V. M. M., Van Montagu, M., & Van Breusegem, F. (2000). Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 57(5), 779-795. 28. Datta, J. K., Nag, S., Banerjee, A., & Mondai, N. K. (2009). Impact of salt stress on five varieties of wheat (Triticum aestivum L.) cultivars under laboratory condition. Journal of Applied Sciences and Environmental Management, 13(3). 29. Davies, W. J., & Zhang, J. (1991). Root signals and the regulation of growth and development of plants in drying soil. Annual review of plant biology, 42(1), 55-76. 30. De Pinto, M. C., Francis, D., & De Gara, L. (1999). The redox state of the ascorbate-dehydroascorbate pair as a specific sensor of cell division in tobacco BY-2 cells. Protoplasma, 209(1), 90-97. 31. Dubey, R.S. (1997). Photosynthesis in plants under stressful conditions. In: M. Pessarakli, ed. Han Photosynthesis. New York: Marcel Dekker: 859-875. 32. Ejaz, S., Fahad, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., & Ahmad, S. (2020). Role of osmolytes in the mechanisms of antioxidant defense of plants. In Sustainable Agriculture Reviews 39 (pp. 95-117). Springer, Cham. 33. Elhakem, A. (2020). Salicylic acid ameliorates salinity tolerance in maize by regulation of phytohormones and osmolytes. Plant, Soil and Environment, 66(10), 533-541. 34. Elstner, E. F. 1987. Metabolism of activated oxygen species in: D. D. Davies (ed.). The Biochemistry of Plants. Biochemistry of Metabolism 11, 253-315. Academic Press San Diego, USA. 35. FAO. (2021,b). Special report: 2021 FAO Crop and Food Supply Assessment Mission to the Syrian Arab Republic– December 2021. Rome36. FAO. )2021,a). World Food and Agriculture - Statistical Yearbook 2021. Rome. 37. FAO. 2022. Food and Agriculture Organization of the United Nation. FAOSTAT Statical Database.] Rome[ . 38. FARDUS, J., MATIN, M. A., Hasanuzzaman, M., HOSSAIN, M. S., NATH, S. D., HOSSAIN, M. A., ... & HASANUZZAMAN, M. (2017). Exogenous salicylic acid-mediated physiological responses and improvement in yield by modulating antioxidant defense system of wheat under salinity. Notulae Scientia Biologicae, 9(2), 219-232. 39. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. 40. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant physiology, 59(2), 309-314. 41. Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiology and biochemistry, 48(12), 909-930. 42. Groppa, M. D., & Benavides, M. P. (2008). Polyamines and abiotic stress: recent advances. Amino acids, 34(1), 35-45. 43. Guan, L. M., Zhao, J., & Scandalios, J. G. (2000). Cis‐elements and trans‐factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. The Plant Journal, 22(2), 87-95. 44. Guóth, A. (2009). Chlorophyll a fluorescence induction parameters of flag leaves characterize genotypes and not the drought tolerance of wheat during grain filling under water deficit. Acta Biologica Szegediensis, 53(1), 1-7. 45. Habibi, G. (2012). Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis, 56(1), 57-63. 46. Hamayun, M., Khan, S. A., Khan, A. L., Shin, J. H., Ahmad, B., Shin, D. H., & Lee, I. J. (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of agricultural and food chemistry, 58(12), 7226-7232. 47. Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress (pp. 25-87). Springer, New York, NY.48. Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and experimental botany, 68(1), 14-25. 49. Hernández-Ruiz, J., & Arnao, M. B. (2018). Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4), 33. 50. Hirayama, T., & Shinozaki, K. (2007). Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends in plant science, 12(8), 343-351. 51. Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit). 52. Horváth, E., Szalai, G., & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290-300. 53. Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., ... & Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in plant science, 6, 420. 54. Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA, Ahmad N, Ahmad S (2019) Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds) Plant abiotic stress tolerance. Springer, Cham, pp 207–219. 55. Hussain, H. A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in plant science, 9, 393. 56. Iqbal, M. J., Shams, N., & Fatima, K. (2022). Nutritional quality of wheat. In Wheat. IntechOpen. 57. Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2015). Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regulation, 76(1), 25-40. 58. Jayakannan, M., Bose, J., Babourina, O., Rengel, Z., & Shabala, S. (2013). Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. Journal of Experimental Botany, 64(8), 2255-2268. 59. Jiang, M., & Zhang, J. (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant and Cell Physiology, 42(11), 1265-1273.60. Kaya, C., Ashraf, M., Dikilitas, M., & Tuna, A. L. (2013). Alleviation of salt stress-induced adverse effects on maize plants by exogenous application of indoleacetic acid (IAA) and inorganic nutrients-A field trial. Australian Journal of Crop Science, 7(2), 249-254. 61. Kaya, C., Aydemir, S., Akram, N. A., & Ashraf, M. (2018). Epibrassinolide application regulates some key physio-biochemical attributes as well as oxidative defense system in maize plants grown under saline stress. Journal of Plant Growth Regulation, 37(4), 1244-1257. 62. Khan, M. I. R., & Khan, N. A. (Eds.). (2017). Reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress. Singapore: Springer Singapore. 63. Khan, M. I. R., Ashfaque, F., Chhillar, H., Irfan, M., & Khan, N. A. (2021). The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: An entrancing crosstalk between stress alleviators. Plant Physiology and Biochemistry, 162, 36-47. 64. Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in plant science, 6, 462. 65. Khan, N. A., Samiullah, Singh, S., & Nazar, R. (2007). Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 193(6), 435-444. 66. Koch, J. R., Creelman, R. A., Eshita, S. M., Seskar, M., Mullet, J. E., & Davis, K. R. (2000). Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. Plant Physiology, 123(2), 487-496. 67. Kong, H., Zhang, Z., & Qin, J. (2021). Interactive effects of abscisic acid (ABA) and drought stress on the physiological responses of winter wheat (Triticum aestivum L.). Pakistan Journal of Botany, 53(5), 1545-1551. 68. Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. 69. Kumar, P., Yadava, R. K., Gollen, B., Kumar, S., Verma, R. K., & Yadav, S. (2011). Nutritional contents and medicinal properties of wheat: a review. Life Sciences and Medicine Research, 22(1), 1-10. 70. Lee, H. I., Leon, J., & Raskin, I. (1995). Biosynthesis and metabolism of salicylic acid. Proceedings of the national academy of sciences, 92(10), 4076-4079.71. Leopold, A. C., Musgrave, M. E., & Williams, K. M. (1981). Solute leakage resulting from leaf desiccation. Plant Physiology, 68(6), 1222-1225. 72. Li, G., Peng, X., Wei, L., & Kang, G. (2013). Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529(2), 321-325. 73. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current protocols in food analytical chemistry, 1(1), F4-3. 74. Mallick, S. A., Azaz, K., Gupta, M., Sharma, V., & Sinha, B. K. (2013). Characterization of grain nutritional quality in wheat. Indian journal of plant physiology, 18, 183-186. 75. Marcińska, I., Czyczyło-Mysza, I., Skrzypek, E., Grzesiak, M. T., Janowiak, F., Filek, M., ... & Grzesiak, S. (2013). Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. International journal of molecular sciences, 14(7), 13171-13193. 76. Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., & Serrano, M. (2019). Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 423. 77. Mehlhorn, H., Lelandais, M., Korth, H. G., & Foyer, C. H. (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS letters, 378(3), 203-206. 78. Menconi, M. C. L. M., Sgherri, C. L. M., Pinzino, C., & Navari-Lzzo, F. (1995). Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. Journal of Experimental Botany, 46(9), 1123-1130. 79. Misra, N., & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181-189. 80. Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11-19. 81. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in plant science, 9(10), 490-498. 82. Miura, K., and Y. Tada. 2014. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5(4):1-12. 83. Mohamed, H. E., & Hassan, A. M. (2019). Role of salicylic acid in alleviating cobalt toxicity in wheat (Triticum aestivum L.) seedlings. J. Agric. Sci, 11. 84. Mohanty, P., & Matysik, J. (2001). Effect of proline on the production of singlet oxygen. Amino acids, 21(2), 195-200.85. Monakhova, O. F., & Chernyadév, I. I. (2002). Protective role of kartolin-4 in wheat plants exposed to soil draught. Applied Biochemistry and Microbiology, 38(4), 373-380. 86. Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651–681. 87. Murshed, R., Lopez-Lauri, F., & Sallanon, H. (2008). Microplate quantification of enzymes of the plant ascorbate–glutathione cycle. Analytical Biochemistry, 383(2), 320-322. 88. Murshed, R., Lopez-Lauri, F., & Sallanon, H. (2014). Effect of salt stress on tomato fruit antioxidant systems depends on fruit development stage. Physiology and Molecular Biology of Plants, 20, 15-29. 89. Natr, L., & Lawlor, D. W. (2005). Photosynthetic plant productivity. Photosynthesis Handbook,(2nd Ed). M. Pessarakli. CRC Press, New York, USA, 501-524. 90. Neill, S. J., Desikan, R., Clarke, A., Hurst, R. D., & Hancock, J. T. (2002). Hydrogen peroxide and nitric oxide as signalling molecules in plants. Journal of experimental botany, 53(372), 1237-1247. 91. Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018, August). ROS-related redox regulation and signaling in plants. In Seminars in cell & developmental biology (Vol. 80, pp. 3-12). Academic Press. 92. Pál, M., Tajti, J., Szalai, G., Peeva, V., Végh, B., & Janda, T. (2018). Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants. Scientific reports, 8(1), 1-12. 93. Parveen, A., Ahmar, S., Kamran, M., Malik, Z., Ali, A., Riaz, M., ... & Ali, S. (2021 b). Abscisic acid signaling reduced transpiration flow, regulated Na+ ion homeostasis and antioxidant enzyme activities to induce salinity tolerance in wheat (Triticum aestivum L.) seedlings. Environmental Technology & Innovation, 24, 101808. 94. Parveen, A., Arslan Ashraf, M., Hussain, I., Perveen, S., Rasheed, R., Mahmood, Q., ... & Abd Allah, E. F. (2021 a). Promotion of growth and physiological characteristics in water-stressed triticum aestivum in relation to foliar-application of salicylic acid. Water, 13(9), 1316. 95. Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant physiology and biochemistry, 115, 126-140. 96. Peterson, P. M. (2013). Poaceae (Gramineae). eLS: Encyclopedia of Life Sciences.97. Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in plant science, 6, 69. 98. Poudel, P. B., & Poudel, M. R. (2020). Heat stress effects and tolerance in wheat: A review. J. Biol. Today’s World, 9(3), 1-6. 99. Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., ... & Noble, A. D. (2014, November). Economics of salt‐induced land degradation and restoration. In Natural resources forum (Vol. 38, No. 4, pp. 282-295). 100. Qiu, Z., Guo, J., Zhu, A., Zhang, L., & Zhang, M. (2014). Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and environmental safety, 104, 202-208. 101. Razmi, N., Ebadi, A., Daneshian, J., & Jahanbakhsh, S. (2017). Salicylic acid induced changes on antioxidant capacity, pigments and grain yield of soybean genotypes in water deficit condition. Journal of Plant Interactions, 12(1), 457-464. 102. Rengasamy, P. (2002). Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Australian Journal of Experimental Agriculture, 42(3), 351-361. 103. Reynolds, M., Skovmand, B., Trethowan, R., & Pfeiffer, W. Evaluating a Conceptual Model for Drought Tolerance. Production in Water-Limited Environments, 49. 104. Sabagh, A. E., Mbarki, S., Hossain, A., Iqbal, M. A., Islam, M. S., Raza, A., ... & Farooq, M. (2021). Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Frontiers in Agronomy, 3, 648694. 105. Sairam, R. K., & Saxena, D. C. (2000). Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. Journal of Agronomy and Crop Science, 184(1), 55-61. 106. Sairam, R. K., & Srivastava, G. C. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162(6), 897-904. 107. Sairam, R. K., Rao, K. V., & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant science, 163(5), 1037-1046. 108. Sairam, R. K., Srivastava, G. C., Agarwal, S., & Meena, R. C. (2005). Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum, 49(1), 85-91.109. Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia horticulturae, 103(1), 93-99. 110. Saruhan, N., Saglam, A., & Kadioglu, A. (2012). Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta Physiologiae Plantarum, 34(1), 97-106. 111. Schonfeld, M. A., Johnson, R. C., Carver, B. F., & Mornhinweg, D. W. (1988). Water relations in winter wheat as drought resistance indicators. Crop Science, 28(3), 526-531. 112. Seleiman, M. F., Aslam, M. T., Alhammad, B. A., Hassan, M. U., Maqbool, R., Chattha, M. U., ... & Battaglia, M. L. (2022). Salinity stress in wheat: effects, mechanisms and management strategies. Phyton (0031-9457), 91(4). 113. Shafi, M., Bakht, J., Hassan, M. J., Raziuddin, M., & Zhang, G. (2009). Effect of cadmium and salinity stresses on growth and antioxidant enzyme activities of wheat (Triticum aestivum L.). Bulletin of environmental contamination and toxicology, 82(6), 772-776. 114. Shemi, R., Wang, R., Gheith, E. S., Hussain, H. A., Cholidah, L., Zhang, K., ... & Wang, L. (2021). Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biology, 21(1), 1-15. 115. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., & Yoshimura, K. (2002). Regulation and function of ascorbate peroxidase isoenzymes. Journal of experimental botany, 53(372), 1305-1319. 116. Shinozaki, K., & Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant physiology, 115(2), 327. 117. Signorelli, S., Arellano, J. B., Melø, T. B., Borsani, O., & Monza, J. (2013). Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiology and Biochemistry, 64, 80-83. 118. Signorelli, S., Coitiño, E. L., Borsani, O., & Monza, J. (2014). Molecular mechanisms for the reaction between• OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry B, 118(1), 37-47. 119. Sinclair, T. R., & Ludlow, M. M. (1985). Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Functional Plant Biology, 12(3), 213-217. 120. Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39(2), 137-141.121. Slesak, I., Libik, M., Karpinska, B., Karpinski, S., & Miszalski, Z. (2007). The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochimica Polonica, 54(1), 39-50. 122. Smirnoff, N. (1993). The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist, 125(1), 27-58. 123. Srivastava, A. K., Pasala, R., Minhas, P. S., & Suprasanna, P. (2016). Plant bioregulators for sustainable agriculture: integrating redox signaling as a possible unifying mechanism. Advances in agronomy, 137, 237-278. 124. Suhaib, M., Ahmad, I., Munir, M., Atta, B., & Abuzar, M. K. (2018). Physiological and Bio-Chemical Responses of Two Different Wheat Genotypes to Applied Salicylic Acid under Salt Stress. Pakistan Journal of Agricultural Research, 31(1). 125. Sultana, N., Ikeda, T., & Itoh, R. (1999). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 42(3), 211-220. 126. Tahjib-Ul-Arif, M., Roy, P. R., Al Mamun Sohag, A., Afrin, S., Rady, M. M., & Hossain, M. A. (2018). Exogenous calcium supplementation improves salinity tolerance in BRRI dhan28; a salt-susceptible high-yielding Oryza sativa cultivar. Journal of Crop Science and Biotechnology, 21(4), 383-394. 127. Upreti, K. K., & Sharma, M. (2016). Role of plant growth regulators in abiotic stress tolerance. Abiotic stress physiology of horticultural crops, 19-46. 128. Vanacker, H., Lu, H., Rate, D. N., & Greenberg, J. T. (2001). A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. The Plant Journal, 28(2), 209-216. 129. Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant science, 151(1), 59-66. 130. Verma, V., Ravindran, P., & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC plant biology, 16(1), 1-10. 131. Wani, S. H., Kumar, V., Shriram, V., & Sah, S. K. (2016). Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal, 4(3), 162-176. 132. Wei, L., Wang, L., Yang, Y., Wang, P., Guo, T., & Kang, G. (2015). Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis. Frontiers in plant science, 6, 458.133. Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current opinion in plant biology, 20, 64-68. 134. Ye, N., Zhu, G., Liu, Y., Li, Y., & Zhang, J. (2011). ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant and cell physiology, 52(4), 689-698. 135. Zhang, J., Jia, W., Yang, J., & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 97(1), 111-119.
النوع
Thesis

2024-03-07
EndNote
تصفح الباحث العلمي من جوجل
إذا لاحظت أي معلومات غير صحيحة تتعلق بهذا السجل ، يرجى الاتصال بنا [email protected]