The Effects of Seasonal Changes of Ambient Temperature and Humidity on Exhaust Pipe Emissions and Greenhouse Gases
2023
Hoseinifar, Seyed Erfan | Shafiepour Motlagh, Majid | Ashrafi, Khosro | Ahadi, Mohammad Reza
This article provides an overview of the main findings of a survey on the effects of ambient temperature and humidity on vehicular emissions of criteria pollutants and greenhouse gases. The present study is focused on the emissions of Carbon Monoxide (CO), Nitrogen Oxides (NOX), Sulfur Oxides (SOX), Particulate Matters (PM), Carbon Dioxide (CO2), Nitrous Oxide (N2O), and Methane (CH4) from gasoline engine passenger cars. In this analytical research, the International Vehicle Emissions (IVE) model was operated, using long-term meteorological data to determine the effects of various ambient temperature and humidity levels on exhaust pipe pollutants and greenhouse gas emissions. The results of present study indicated that as the ambient temperature increases from -7.5 °C to 20 °C, CO, NOX, and CH4 emissions decrease by 35.8%, 6.46%, and 21.44%, respectively, while SOX, PM, CO2, and N2O emissions remain constant. In contrast, increasing the ambient temperature from 20 °C to 37.5 °C increases the emissions of all the investigated pollutants and greenhouse gases. On the other hand, the findings showed that as the ambient humidity increases from 8% to 98% CO and CH4 emissions increase by 7.3% and 2.13%, respectively; while NOX emissions decrease by 16.84%. However, humidity changes did not have noticeable impact on the emissions of SOX, PM, CO2, and N2O. This study concluded that changes in meteorological parameters over a certain period of time, not only affect global warming, but also the emissions of criteria pollutants.
اظهر المزيد [+] اقل [-]المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل University of Tehran