Multivariate regional deep learning prediction of soil properties from near-infrared, mid-infrared and their combined spectra
2024
Nyawasha, Rumbidzai | Wadoux, Alexandre, M. J.-C. | Todoroff, Pierre | Chikowo, Regis | Falconnier, Gatien | Lagorsse, Maeva | Corbeels, Marc | Cardinael, Rémi | University of Zimbabwe (UZ) | Agroécologie et intensification durables des cultures annuelles (UPR AIDA) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-AgroParisTech-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | International Maize and Wheat Improvement Center [Zimbabwe] (CIMMYT) ; International Maize and Wheat Improvement Center (CIMMYT) ; Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR) | International Institute of Tropical Agriculture (IITA Kenya) ; International Institute of Tropical Agriculture [Nigeria] (IITA) ; Consultative Group on International Agricultural Research [CGIAR] (CGIAR)-Consultative Group on International Agricultural Research [CGIAR] (CGIAR) | This study was funded by the DSCATT project "Agricultural Intensification and Dynamics of Soil Carbon Sequestration in Tropical and Temperate Farming Systems" (No AF 1802-001, No FT C002181) , supported by the Agropolis Foundation ("Programme d'Investissement d'Avenir" Labex Agro, ANR-10-LABX- 0001-01) and by the TOTAL Foundation within a patronage agreement. | ANR-10-LABX-0001,AGRO,Agricultural Sciences for sustainable Development(2010)
International audience
اظهر المزيد [+] اقل [-]إنجليزي. Artificial neural network (ANN) models have been successfully used in infrared spectroscopy research for the prediction of soil properties. They often show better performance than conventional methods such as partial least squares regression (PLSR). In this paper we develop and evaluate a multivariate extension of ANN for predicting correlated soil properties: total carbon (C), total nitrogen (N), clay, silt, and sand contents, using visible nearinfrared (vis-NIR), mid-infrared (MIR) or combined spectra (vis-NIR + MIR). We hypothesize that accounting for the correlation through joint modelling of soil properties with a single model can eliminate "pedological chimera": unrealistic values that may arise when properties are predicted independently such as when calculating ratio or soil texture values. We tested two types of ANN models, a univariate (ANN-UV) and a multivariate model (ANN-MV), using a dataset of 228 soil samples collected from Murehwa district in Zimbabwe at two soil depth intervals (0-20 and 20-40 cm). The models were compared with results from a univariate PLSR (PLSR-UV) model. We found that the multivariate ANN model was better at conserving the observed correlations between properties and consequently gave realistic soil C:N and C:Clay ratios, but that there was no improvement in prediction accuracy over using a univariate model (ANN or PLSR). The use of combined spectra (vis-NIR + MIR) did not make any significant improvements in prediction accuracy of the multivariate ANN model compared to using the vis-NIR or MIR only. We conclude that the multivariate ANN model is better suited for the prediction of multiple correlated soil properties and that it is flexible and can account for compositional constrains. The multivariate ANN model helps to keep realistic ratio values - with strong implications for assessment studies that make use of such predicted soil values.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Institut national de la recherche agronomique