CO2 sequestration: microalgae genome analysis and its application of effective green source technology
2022
Ranjith Kumar, R | Jency, Monika S | Bhavatarini, G | Devapriya, M. Jeslyn Priscilla
Microalgae genome technology for CO2 sequestration is an appropriate vehicle for articulating the importance of the current need and solution for reduction of CO2 at the atmospheric level. In comparison with C4 plants, microalgae have greater capability to fix atmospheric CO2.The rate of CO2 fixation differs in different strains of microalgae. The photosynthetic enzyme RuBisCO is widely responsible for photosynthetic carbon assimilation in all plants including phototrophic algae.The gene rbcL encodes this enzyme. The catalytic activity of carbonic anhydrase achieves the CO2 generation in the RuBisCO. CAH3 gene is essential for generating CO2 concentration for RuBisCO by dehydration of accumulated inorganic carbon. There are also few other microalgae genes which involves for carbon assimilation. Genomic resource databases and several other nucleotide databases are being used for sequencing the microalgal genomes. Even though, recent advances in genomic studies are providing thrust to enhance the research on microalgal species, they are expensive and resources available for microalgal genomic studies are limited. This review article attempts first as a combined revise on microalgae CO2 sequestration in the field of basic science, applied aspects, and the role of specific gene(s) in the algal system is well defined which could be a supportive involvement of carbon dioxide reduction as “Green-Gene Technology”. This Green biotechnology could be used for Global warming reduction as well as creating wealth from the waste through valuable by-products from the selected microalgae strains in future.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Horizon e-Publishing Group