The Effect of Cut-Off Frequency on Signal Features When Filtering Equine sEMG Signal from Selected Extensor Muscles
2025
Małgorzata Domino | Marta Borowska | Elżbieta Stefanik | Natalia Domańska-Kruppa | Bernard Turek
The use of surface electromyography (sEMG) in equine locomotion research has increased significantly due to the essential role of balanced, symmetrical, and efficient movement in riding. However, variations in sEMG signal processing for forelimb extensor muscles across studies have made cross-study comparisons challenging. This study aims to compare the sEMG signal characteristics from carpal extensor muscles under different filtering methods: raw signal, low-pass filtering (10 Hz cut-off), and bandpass filtering (40–450 Hz cut-off and 7–200 Hz cut-off). sEMG signals were collected from four muscles of three horses during walking and trotting. The raw signals were normalized and filtered separately using a 4th-order Butterworth filter: low-pass 10 Hz, bandpass 40–450 Hz, or bandpass 7–200 Hz. For each filtered signal variant, eight activity bursts were annotated, and amplitude, root mean square (RMS), median frequency (MF), and signal-to-noise ratio (SNR) were extracted. Signal loss and residual signal were calculated to assess noise reduction and data retention. For m. extensor digitorum lateralis and m. extensor carpi ulnaris, bandpass filtering at 40–450 Hz resulted in the lowest signal loss and the highest amplitude, RMS, MF, and SNR after filtering. However, variations were observed for the other two carpal extensors. These findings support the hypotheses that the characteristics of myoelectric activity in equine carpal extensors vary depending on the filtering method applied and differ among individual muscles, thereby guiding future research on sEMG signal processing and, consequently, equine biomechanics. Since both noise and its reduction alter raw sEMG signals, potentially affecting data analysis, this study provides valuable insights for improving the reliability and reproducibility of equine biomechanics research across different sEMG studies.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Directory of Open Access Journals