Machine Learning for predicting industrial performance: example of the dry matter content of Emmental-type cheese
2025
Perrignon, Manon | Emily, Mathieu | Munch, Mélanie | Jeantet, Romain | Croguennec, Thomas | Science et Technologie du Lait et de l'Oeuf (STLO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut de Recherche Mathématique de Rennes (IRMAR) ; Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes) ; Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
اظهر المزيد [+] اقل [-]إنجليزي. Controlling the dry matter content of cheese is essential to defining the performance of cheese production. For Emmental-type cheese, dry matter content has to be above but as close as possible to a minimal value that is defined by legislation. The means for achieving the target dry matter content was mostly left to the discretion of the cheese experts, who target a dry matter objective based on his expert knowledge and the deviation of cheese production. To date, the prediction of performance indicators, such as cheese dry matter content, can help cheesemakers to improve their production performance. Several Machine Learning models and classical statistical methods were compared to predict the dry matter of Emmental cheese for a set of data coming from one selected cheese industry. The Random Forest method emerged as the most effective model (RMSE = 0.28 and R² = 0.67). The weight of variables in explaining the variability of cheese dry matter content was also calculated, helping cheese experts to interpret the model and apply corrective actions to improve cheese production performance. The ability to predict cheese dry matter content and understand its variability from cheese manufacturing data offer new perspectives for the cheese industry. This method can be transferred to other indicators and assist in decision-making to enhance industry performance.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Institut national de la recherche agronomique