Seasonal and Diurnal Ammonia Emissions from Swine-Finishing Barn with Ground Channel Ventilation
2025
Jinho Shin | Heecheol Roh | Daehun Kim | Jisoo Wi | Seunghun Lee | Heekwon Ahn
This study evaluated the impact of a ground channel ventilation system on seasonal ammonia emissions in a swine-finishing barn over three distinct seasons: summer, late autumn, and winter. The ground channel system tempered inlet air, cooling it during summer and warming it during colder seasons, maintaining stable room temperatures despite external fluctuations. During summer, the ground channel reduced the incoming air temperature from 26.9 °C to 22.5 °C, contributing to steady barn temperatures (28.0 °C) and mitigating ammonia emissions, which reached 111.0 ± 23.6 g day<sup>−1</sup> AU<sup>−1</sup>. In late autumn and winter, it warmed the inlet air from 4.7 °C and −0.7 °C to 8.1 °C and 6.8 °C, respectively, maintaining stable room temperatures (25.1 °C and 24.3 °C). Ammonia emissions remained consistent across seasons, with 125.0 ± 37.3 g day<sup>−1</sup> AU<sup>−1</sup> in late autumn and 107.1 ± 20.5 g day<sup>−1</sup> AU<sup>−1</sup> in winter. Thus, ammonia emissions showed no seasonal differences, highlighting the system’s effectiveness in balancing ventilation rates with emissions. During late autumn and winter, it improved air quality without compromising thermal comfort for the swine. In summer, the reduced ventilation demand lowered ammonia emissions, supporting the effective management of ammonia emissions year-round. Future research should investigate the system’s effects on other gases and slurry pit temperatures.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Directory of Open Access Journals