Combining Environmental Variables and Machine Learning Methods to Determine the Most Significant Factors Influencing Honey Production
2025
Johanna Ramirez-Diaz | Arianna Manunza | Tiago Almeida de Oliveira | Tania Bobbo | Francesco Nutini | Mirco Boschetti | Maria Grazia De Iorio | Giulio Pagnacco | Michele Polli | Alessandra Stella | Giulietta Minozzi
Bees are crucial for food production and biodiversity. However, extreme weather variation and harsh winters are the leading causes of colony losses and low honey yields. This study aimed to identify the most important features and predict Total Honey Harvest (THH) by combining machine learning (ML) methods with climatic conditions and environmental factors recorded from the winter before and during the harvest season. The initial dataset included 598 THH records collected from five apiaries in Lombardy (Italy) during spring and summer from 2015 to 2019. Colonies were classified into medium-low or high production using the 75th percentile as a threshold. A total of 38 features related to temperature, humidity, precipitation, pressure, wind, and enhanced vegetation index&ndash:EVI were used. Three ML models were trained: Decision Tree, Random Forest, and Extreme Gradient Boosting (XGBoost). Model performance was evaluated using accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC). All models reached a prediction accuracy greater than 0.75 both in the training and in the testing sets. Results indicate that winter climatic conditions are important predictors of THH. Understanding the impact of climate can help beekeepers in developing strategies to prevent colony decline and low production.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute