Rapid Computation of Seismic Loss Curves for Canadian Buildings Using Tail Approximation Method
2025
Payam Momeni | Katsuichiro Goda | Navid Sirous | Sheri Molnar
Traditional seismic risk assessments often require specialized expertise and extensive computational time, making probabilistic seismic risk evaluations less accessible to practitioners and decision-makers. To reduce the barriers related to applications of quantitative seismic risk analysis, this paper develops a Quick Loss Estimation Tool (QLET) designed for rapid seismic risk assessment of Canadian buildings. By approximating the upper tail of a seismic hazard curve using an extreme value distribution and by integrating it with building exposure-vulnerability models, the QLET enables efficient computation of seismic loss curves for individual sites. The tool generates seismic loss exceedance probability curves and financial risk metrics based on Monte Carlo simulations, offering customizable risk assessments for various building types. The QLET also incorporates regional site proxy models based on average shear-wave velocity in the uppermost 30 m to enhance site-specific hazard characterization, addressing key limitations of global site proxy models and enabling risk-based seismic microzonation. The QLET streamlines hazard, exposure, and vulnerability assessments into a user-friendly tool, facilitating regional-scale risk evaluations within practical timeframes, making it particularly applicable to emergency preparedness, urban planning, and insurance analysis.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute