Evaluation of Environmentally Important Elements from Glacial Ice-Water and Associated Glacial Sediments
2025
Kashmala Jadoon | Syeda Fazoon Kazmi | Sidra Arshad | Noor ul Huda Sajid | Adnan Ahmad Tahir | Özgür Doğan | Alidehou Jerrold Agbankpe | Rashid Nazir
Glaciers are significant sources of fresh water on planet Earth. The Hindukush&ndash:Karakoram&ndash:Himalayan (HKH) glaciers provide the water supply to more than half of the human population of the globe, for agricultural activities, biodiversity survival, and ecosystem services. In recent years, the loss of glacial ice has been forecasted to cause problems such as sea level rise, changes in water availability, and release of contaminants that reside in the surfaces of glaciers or within them. In this regard, mineralogical sediments play a significant role in the geochemistry of glaciers and element cycling. This study analyzed elemental pollutants found in the glaciers of Pakistan and investigated the diverse bacterial communities residing therein. Samples of ice and sediments were collected from the Gilgit, Hunza, and Swat glaciers in northern Pakistan. Nine elements, including co-factors, heavy metals, and nutrients, were assessed using atomic absorption spectrophotometry. The research findings indicate higher concentrations of the elements K, Fe, Cu, and Cr in Hunza glacier ice (Hgi) and Ni, Zn, As, and Cd in Gilgit glacier ice (Ggi). In terms of glacier sediments, Swat (Sgs), Gilgit (Ggs), and Hunza (Hgs) samples showed the highest concentrations of K, Cu, Ni, Zn, As, Pb, Cd, and, respectively, of Fe, and Cr. The amount of Cu and Cr is the same in Swat glacier ice and Swat glacier foot. However, the concentration of some elements (As, K, Pb, Zn) is higher in Swat glacier ice, while the amount of some elements (Cd, Ni) is greater in Swat glacier foot. Furthermore, microbial cultivation techniques revealed diverse bacterial communities inhabiting the sampled glaciers. Phylogenetic analysis of the bacterial isolates, based on 16S rRNA gene sequences, showed high homology (99&ndash:100%) with previously reported species. The resultant phylogenetic tree grouped the bacterial isolates, such as Serratia marcescens, Cupriavidus sp., and Bacillus cereus, with closely related species known for their roles in nutrient cycling, environmental resilience, and metal tolerance. These findings highlight the ecological significance and adaptive potential of microbial communities in glacier environments, emphasizing their role in elemental cycling and environmental resilience.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute