Effect of Hydraulic Retention Time on Municipal Wastewater Treatment Using a Membraneless Single-Chamber Microbial Fuel Cell
2025
Brenda Verónica Borrego-Limón | Silvia Yudith Martínez-Amador | Miguel Ángel Pérez-Rodríguez | Pedro Pérez-Rodríguez | Alfredo Valentín Reyes-Acosta | Leopoldo Javier Ríos-González | José Antonio Rodríguez-De la Garza
Microbial fuel cells (MFCs) can have high pollutant removal efficiencies and generate electricity: however, the use of selective membranes represents a considerable expense. In this investigation, the performance of a membraneless MFC was evaluated at different hydraulic retention times (HRTs) of 12, 24, 36, and 48 h. The chemical oxygen demand removal efficiencies (CODREs) were 93.5, 90.9, 87.3, and 85.4%, and the biochemical oxygen demand (BODRE) values were 94.5, 91.5, 88.9, and 85.5 at HRTs of 48, 36, 24, and 12 h, respectively. Lower concentrations of solids (suspended solids and total dissolved solids), total nitrogen, phosphorus, fats and oils, and microbiological contamination (helminth eggs and fecal coliforms) were detected when operating the system at a 48 h HRT. At an HRT of 12 h, no decrease in electrical conductivity was detected, whereas at 48 h, it decreased by 19.6%. The oxidation&ndash:reduction potential and OCV increased at longer HRTs. The microorganisms detected at the anode were Achromobacter denitrificans, Achromobacter anxifer, and Pseudomonas aeruginosa. The 48 h HRT improved the chemical, physical, and microbiological quality of the municipal wastewater, favoring voltage generation.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute