An Analysis of the Spatial-Temporal Characteristics and Regulatory Strategies Pertaining to CH4 Emissions in China from 2000 to 2023
2025
Lin Yang | Min Wang | Rupu Yang | Liping Li | Xiangzhao Feng
Methane (CH4), the second-largest global greenhouse gas and a key driver of tropospheric ozone formation, critically influences climate change and air quality. As the world&rsquo:s largest CH4 emitter, China must develop targeted mitigation strategies to support its carbon peak and neutrality goals while reducing ozone pollution. Here, we analyzed the spatiotemporal evolution of provincial CH4 emissions in China from 2000 to 2023 using spatial autocorrelation, hotspot detection, trend analysis, and K-means clustering. Our results revealed a triphasic emission trajectory&mdash:rapid growth followed by stabilization and a recent resurgence&mdash:with all provinces except Tibet showing increasing trends. The energy sector emerged as the primary contributor, particularly in Inner Mongolia, Shanxi, and Shaanxi, whereas agricultural emissions dominated in pastoral regions, such as Inner Mongolia and Sichuan, and rice-growing areas, such as Hunan and Hubei. Coastal provinces, including Shandong, Jiangsu, and Guangdong, exhibited waste disposal as their predominant CH4 source. Based on these patterns, we classified the emission zones into four distinct typologies: coal-dominant, waste-dominant, oil-agriculture composite, and multifactorial systems, proposing tailored mitigation frameworks that integrate CH4 and ozone co-reduction. This study provides a spatially resolved foundation for synergistic climate and air quality governance in China.
اظهر المزيد [+] اقل [-]الكلمات المفتاحية الخاصة بالمكنز الزراعي (أجروفوك)
المعلومات البيبليوغرافية
تم تزويد هذا السجل من قبل Multidisciplinary Digital Publishing Institute